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EFFECTS OF STRESS ON JUDGMENT AND DECISION MAKING
IN DYNAMIC TASKS
1 September 1988 - 31 December 1989

Kenneth R. Hammond (Principal Investigator)
and Cynthia M. Lusk
University of Colorado, Boulder

EXECUTIVE SUMMARY

The primary goal of the project was to increase understanding
of the effects of stress on judgment and decision making under
changing conditions. This report covers work carried out during the
period September 1, 1988 to December 31, 1989. The context of the
research was aviation weather forecasting at the National Center for
Atmospheric Research (NCAR) and the National Oceanic and
Atmospheric Administration (NOAA) research sites that provide the
necessary circumstances for generalization of results with respect to
both (a) professional persons as subjects and (b) conditions involving
changing information of sufficient complexity to be of interest to the
military. In addition, substantial reviews of the literature on (a) the
effects of stress on judgment and decision making and (b) the effects
of variation in display formats were carried out and annotated
bibliographies constructed.
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Empirical studies of these topics of expert judgment and
decision making in both static and dynamic tasks were carried out in
relation to three weather forecasting problems, (a) hail, (b)
microbursts, and (c) the effects of stress on forecasts of convection
initiation at an airport approach.

Hail

A paper describing the results of this research was published
in the journal Weather and Forecasting. The abstract states:

This study compared meteorologists, an expert systein, and
simple weighted-sum models in a limited-information hail
forecasting experiment. It was found that forecasts made by
meteorologists were closely approximated by an additive
model, and that the model captured most of their forecasting
skill. Furthermore, the additive model approximated the
meteorologists' forecasts better than the expert system did.
Results of this study are consistent with the results of
extensive psychological research on judgment and decision
making processes. Potential implications are discussed.

See Appendix I for full report.

Microbursts

Two manuscripts describing the work were completed; one was
sent to a psychological journal, the other to a meteorological journal.
Both were accepted conditionally upon some revision, now
underway. A paper describing the microburst research was
presented at an international aviation weather conference.

Abstract from Manuscript Submitted to Psychological Journal

The major goals of this research are to {a) study professionals
engaging in dynamic, and thus reprcsentative, task conditions,
(b) apply lens model theory to these dynamic conditions, (c)
learn how judgments are changed in response to changing
comditions, and (d) utilize a hierarchical judgment model to
investigate the judgment process from perception of data to
final judgment. The results indicate that (a) agreement
regarding secondary cue values is modest, not because of
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differences in perception of primary cue values but because of
differences in inferences drawn from them, (b) magnitude of
agreement for each secondary cue is related to the proximity of
the cue to primary cue data, and (c) agreement in probability
judgments is higher when secondary cue values are specitied.
There was some evidence to suggest an increase in agreement
among forecasters' judgments as more infermation relevant to
judgment was received. Finally, increased information over
time resulted in more extreme probability judgments for half
the forecasters.

See Appendix II for full report

Abstract from Manuscript Submitted to Meteorological Journal

Two studies of microburst forecasting were conducted in order
to demonstrate the utility of applying theoretical and
methodological concepts from judgment and decision making to
meteorology. A hierarchical model of the judgment process is
outlined in which a precursor identification phase is separated
from the prediction phase. In the first study, forecasters were
provided with specific, perfectly reliable precursor values and
were asked to provide judgments regarding the probability of a
microburst. Results indicated that the microburst forecasts
were adequately represented by a linear model. Modest
agreement was observed among the forecasters' judgments. In
the second study forecasters viewed storms under dynamic
conditions representative of their usual operational setting.
They made judgments regarding precursor values, as well as
the probability of a microburst occurring. The forecasters'
agreement regarding microburst predictions was found to be
even lower than in the first study. In addition, agreement
regarding microburst predictions was found to be even lower
than in the first study. In addition, agreement regarding the
(subjectively) most important precursor value was near zero.
These results suggest that opportunities to improve forecasting
would result from a better understanding of the precursor
identification and prediction phases of the forecasting process.

Seeg. Appendix IIT for full report
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Convection Initiation and the Effects of Stress

A field study of the effects of high and low stress on expert
meteorologists forecasting convection at Stapleton Airport in Denver,
Colorado was carried out. The summary states:

In sum, all of the results presented indicate a decrement in
performance on low stress (activity) days compared to high
stress (activity) days. The bias measures (Table 4) indicate
that the decrement may be due, in part, to larger judgmental
biases occurring during low stress days. In addition, there is
some evidence (Table 6) that forecasters use a higher criterion
(B) under low stress than high stress conditions. More research
is necessary to clarify and expand these findings. Although the
present data indicate forecasters may introduce bias into their
judgments or a different decision criterion may be operating on
low stress days, the processes accounting for the differences
are unknown.

Note: Further analyses of these data were carried out and a
manuscript is now in preparation for publication.

See Appendix IV for the full report.

Field Study of the Effects of Stress on the Use
of Various Information Displays,
Cognitive Processes and Accuracy of Inference

In order to provide baseline data for a field study of the
effects of stress in naturalistic conditions at the National Weather
Service forecasting conditions office in Denver, a study was
undertaken of three meteorologists making forecasts of convection
(thunderstorms) over four regions and six forecasting occasions
during a one hour period of data display under changing conditions.
These data have been collected and analysis is underway. How= . er,
the proposal submitted to ARI was not approved for funding, thus
eliminating our study of the effects of stress.
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Annotated Bibliography for the Effects of Stress on
Judgment and Decision Making (Revised)

A letter of inquiry about recent research was sent to 60
authors whose work was included in the draft bibliography. As a
result, 25 new citations and annotations were added and the
conclusions in the draft manuscript were updated and revised. This
review was included with Report No. 13.

Annotated Bibliography for the Effects of Display Format
on Judgment and Decision Making

This annotated bibliography is nearing completion. The goal of
this bibliography was to review the literature on the effects of -
display format on the cognitive processing of that information. The
annotations are complete and the final touches on the bibliography
are in process, including the writing of an introduction. A major
portion of the annotations are included as Appendix V.

Overall Conclusions

1. The methodology used to study static tasks can be applied to
the study of dynamic decision making with useful results, a
conclusion which has far-reaching methodological consequences.

. Research on dynamic decision making led to many of the same
results found in relation to decision making in static tasks, namely,
(a) a difference wi. found between experts' description of their
cognitive activity and their cognitive activity as observed and
analyzed by quantitative procedures; (b) only moderate agreement
was found within and between expert judges; (c) psychologists were
more accurate than expert forecasters in predicting which conditions
would enhance accuracy of forecasts.

3. The search of the literature on the effects of stress on judgment
and decision making led to the following conclusion:

No: generalization regarding the effects of stress on judgment
and decision making can be readily justified on the basis of the
articles annotated here. No general principle explaining the
effect of stress on judgment and decision making is supported
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by a conclusive set of empirical studies. It has not been
clearly demonstrated that stress impairs, enhances, or has no
effect on cognitive activity. Predictions about the effects of
stress on judgment and decision making in specific
circumstances cannot be defended by reference to this
literature.

The results of the field study reported in Appendix 1V
contradict conventional wisdom; performance improved under
stressful conditions. In addition, our analysis showed that
although forecasting accuracy (as defined in terms of Signal
Detection Theory) improved under stressful conditions, the
decision criterion (f) used by the forecasters implicitly
changed; although the forecasters were unaware of it the ratio
of false positives to false negatives increased. The implications
of these results are the topic of a manuscript in preparation.
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Analysis of Expert Judgment in a Hail Forecasting Experiment

THOMAS R. STEWART,!"** WILLIAM R. MONINGER,* JANET GRASSIA,
RAY H. BRADY* AND FRANK H. MERREM*

¢ Environmental Research Laboratories, National Oceanic and Atmospheric Administration, Boulder, Colorado
YCenter for Research on Judgment and Policy, University of Colorado at Boulder, Boulder, Colorado

{Manuscript received 15 March 1988, in final form 20 December 1988)

ABSTRACT

This study compared meteorologists, an expert system, and simple weighted-sum models in a limited-infor-
mation hail forecasting experiment. It was found that forecasts made by meteorologists were closely approximated
by an additive model, and that the model captured most of their forecasting skill. Furthermore, the additive
model approximated the meteorologists® forecasts better than the expert system did. Results of this study are
consistent with the results of extensive psychological research on judgment and decision making processes.

Potential implications are discussed.

1. Introduction

The fuiure in weather forecasting is a partnership
between person and machine (Snellman 1977: Schlat-
ter 1985; Tennekes 1988), and an undersianding of
the capabilities and lim'tations of both is critical to
making that partnership effective. Although computer
models and algorithms help aggregate weather infor-
mation for operational forecasters, the human fore-
caster remains the primary information processor.
While a great deal of effort has been devoted to the
development of advanced weather forecasting work-
stations, there has been little study of how forecasters
aggregate the information provided by the worksta-
tions. The human information processing system is the
least understood, yet probably the most important,
component of forecasting accuracy.

Human information processing has been a major
topic of study by psychologists and others interested
in judgment and decision making, and that research
has produced a substantiat body of knowledge, theories,
and techniques that are relevant to the design and im-
plementation of person-machine weather forecasting
systems. Three major conclusions drawn from judg-
ment and decision research may have particular rele-
vance for weather forecasting: 1) the results of system-
atic studies of human information processing yield in-
sights into this process that often contradict people’s

»
T

** Present affiliation: Ceater for Policy Research, The University
at Albany, State University of New York, Albany, New York.

Corresponding author address: Dr. Thomas R. Stewart, Center for
Policy Research, Milne 300, The State University of New York—
Albany, Albany, New York 12222,
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introrpective observations; 2) human information
pror.essing is limited and subject to systematic errors
and biases; and 3) cognitive assistance can overcome
some of the limitations of the ‘vdgment process and
improve the quality of judgment. For rzviews of the
research, see Einhorn and Hogarth (1981 ), Hammond
et al. (1980), Hogarth (1980), Sjoberg (1982), Slovic
and Lichtenstein (1973), and Slovic et al. (1977).

In this paper we describe an experiment which il-
lustrates how research techniques that have been used
by psychologists for over 30 yr can be used to study
information processing by weather forecasters. The
next section explains how this experiment fits into an
overall strategy for investigating the cognitive processes
of weather forecasters. Then we describe the experi-
ment, present the results, and discuss the implications.

2. Overview of research strategy

The cognitive processes used in weather forecasting
can be divided into three categories: information ac-
quisition, information integration, and output (see
Hogarth 1980). Information acquisition is the process
of obtaining the information about past and current
weather. Each feature of past and current weather (c.g.,
radar signatures such as reflectivity, rotation, tilt) is a
“cue” for the forecast of future weather. Information
integration is the activity of assimilating and organizing
the cues into a judgment, or set of judgments, about
future weather. Output is the process of formulating
the forecast into its final form to be issued to the public.

In cognitive psychology, as in most other areas of
research, it is necessary to simplify a phenomenon in
order to study it. In the present study, we chose to
simplify by excluding the perceptual processes involved

o
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in information acquisition and limiting the forecasters’
cognitive activily to information integration and out-

.‘put. As a result, this :itudy concerns only the integration
of information to form a forecast, not the perceptual
processes involved in acquiring information. Qur
method (described below) assured that all forecasters
in the study used exactly the same information. Con-
sequently, some aspects of forecast skill were necessarily
excluded from the study, and a somewhat unrealistic
forecasting situation was created because the meteo-
rologists were not able to acquire information as they
would in an operational setting.

In the study of complex cognitive processes, there is
an inherent trade-off between realism and control that
givesTise to a difficult dilemma. We can study cognitive
processes 1n highly realistic situations (e.g., operational
forecasters making actual forecasts) where we have very
little control, and are therefore not able to draw strong
conclusions about the results, or we can conduct con-
trolled studies by introducing constraints (as we did in
the present study) so that we can be clear about the
results of the experiment, at the expense of introducing
doubt about the generality of the results.

The resolution of this dileznma is to inciude studies
representing various poinis on the realism/control
continuum in a research program. When the results of
controlled studies are consistent with what is observed
in natural settings, we can be confident in our findings.
The study to be reported here falls near the low realism/
high control end of the continuum. As a result, we can
expect to draw relatively clear conclusions about how
forecasters integrate information in the experiment
(“internal validity”) but we must be cautious in gen-
eralizing to the cognitive activity of forecasters in op-
erational settings (“‘external validity™). Despite their
limitations, such simplified studies ¢f judgment and
decision making have provided importznt insights into
the nature of human cognition (Brown 1972; Kirwan
et al. 1983; Dawes 1986). When they are combined
with results of more realistic studies (which we have
currently planned ) the generality of the results can be
systematically investigated. Furthermore, when the re-
sults of a limited study are consistent with a larger body
of theory and research, confidence in generalizations
increases. Thus, this study should be viewed as an initial
step in the systematic study of human information
processing in weather forecasting.

3. Method

Information derived from Doppler radar volume
scans of 75 storms was presented to seven meteorol-
ogists who then made probability forecasts of hail and
severe hail. Two different models, representing alter-
native ways of describing the meteorologists’ subjective
judgment processes, were compared with the forecasts.
The radar volume scan data, the procedure for obtain-
ing forecasts, and the models are described below.

10
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a. Data

The raw data for the study consisted of 644 Doppler
radar volume scans of 156 storms. The data were col-
lected in the summer of 1985 during a forecasting ex-
ercise (Haugen 1986) conducted by NOAA’s Program
for Regional Observing and Forecasting Services
(PROFS). The radar was operated by the National
Center for Atmospheric Research (NCAR). This radar
(CP-2) produced volume scans of reflectivity, Doppler
velocity, and differential reflectivity every 5 min, but
scans included in the dataset were separated by 10-min
intervals. The cues used were determined as part of an
earlier project to develop an expert system for hailstorm
diagnosis (Merrem and Brady 1988). For that study,
a meteorologist (RHB) played back the radar data, and
then visually estimated seven cues. The cues were
maximum reflectivity at 1) low, and 2) middle levels
of the storm, 3) maximum echo gradient within the
storm, 4) rotation or convergence within the storm,
and 5) tiit of the storm between low and middle levels.
The optional cues, which were available for only some
of the radar data, were 6) hail signature based on dif-
ferential reflectivity (ZDR) and 7) upper-level diver-
gence. The severity of each storm was determined from
the logs of PROFS chase teams who observed the
storms in situ, or from public reports telephoned to
the local National Weather Service ofiice. It was nec-
essary to modify the original dataset because data were
missing in many volume scans, and only volume scans
with complete data could be used in this study. There-
fore, upper-level divergence information was not used
because it was missing in 67% of the volume scans. In
addition, 191 volume scans were dropped because the
ZDR signature was not available. The dataset used in
this study consisted of six cue variables for the re-
maining 453 volume scans. Examination of these cases
showed they were similar to the original set. The cues
and the scoring criteria are listed below.

1) Reflectivity of core at low level. From the low-
level (0.7 deg) reflectivity PPI scan, estimate the average
reflectivity of the storm’s core, assuming it consists of
at least seven—ten pixels. (Note: In the summer of 1985,
a pixel of data displayed on the monitors of the PROFS
workstation corresponded to a 500 m X 500 m square.)

2) Reflectivity of core at middle level. From the
middle-level (6.4 km AGL) reflectivity CAPPI (con-
stant altitude ) scan, estimate the average reflectivity of
the storm’s core, assuming it also consists of at least
seven—ten pixels.

3) Stiong echo gradient. Is there an area of echo (i)
at low or middle-levels, (ii) a few kilometers or more
in length, and (iii) situated on the SE, §, SW, or ad-
vancing flank of the storm where the reflectivity gra-
dient exceeds 8 dBZ km™"?

4) Tili. Comparing the middle-level CAPPI and
low-level PPI scans, (i) Is the middle-level high reflec-
tivity core situated over the strong low-level reflectivity

™




26 WEATHER AND FORECASTING

gradient? or (ii) does a horizontal distance of approx-
imately 4 km or more separate the centers of the two
cores? )

5) Rotarion. In terms of velocity difference, what is
the magnitude of the strongest (cyclonic or anticy-
clonic) shear or convergence signal observed within
the echo at either low or middle levels?

6) Favorable ZDR signature. Do the low-level (0.2
deg) differential reflectivity data show a coherent (sev-
eral pixels) hail signal with this cell?

Verification. In the set of 453 volume scans, either
significant (diameter = 0.25 in. or small hail = 1 in.
deep) or severe (diameter = % in.) hail was verified

within 30 min after 16.1% of the observations, and .

severe hail was verified after 6.6% of the observations.
The problems associated with the verification of severe
weather events have been discussed by Hales (1987).
Severe storms which track across densely populated
urban areas are more likely to be verified as such than
are severe storms which remain over sparsely populated
rural areas. Although potentially severe storms occur-
ring over rurzl areas generally had a PROFS chase team
assigned to them, it is likely that some of the.significant
or severe hail avents accompanying these storms were
not observed by chase teams. In addition, all hail re-
ports were strictly interpreted; i.e., a storm reported as
producing hail at 1539 LST was not assumed to be a
hail producer at 1540 LST unless it was reported as
hailing at the later time. Even though the majority of
potential hail-producing storms were observed by chase
teams, a few storms were undoubtedly missed. Al-
though we consider our verification dataset to be one
of the most complete ever assembled during a real-
time forecast experiment, these inherent problems re-
main.

b. The forecasts

Seven meteorologists made 30-min probabilistic hail
forecasts for a sample of 75 volume scans drawn from
the onginal 453. The participants were all research me-
teorologists who had participated in one or more real-
time forecasting experiments using the PROFS work-
station. A stratified random sampling procedure was
used to select the 75 volume scans to ensure that the
base rate (propottion of volume scans for which hail
was verified) in the sample matched that in the pop-
ulation of 453 volume scans. Because an error was dis-
covered in the verification data after the study was run,
the base rate in the sample turned out to be 14.7% for
significant orsevere hail and 5.3% for severe hail only.

On the basis of the six cue variables for each volume
scan, the meteorologists estimated probabilities both
for any hail (significant or severe) and for severe hail
only. Figure | illustrates how the volume scans were
presented to the meteorologists. For reasons described
in section 2, the levels of the cues for each volume scan
were specified; i.c., meteorologists did not perceive

11
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thern directly from the radar display as they would in
operational forecasting,.

The meteorologists expressed concern about the
limited information they were given. They said that to
forccast hail they would need additional information,
for example, about the evolution of the storm, the
storm’s relation to the surrounding environment, and

-its location relative to the radar. We explained that the

information provided was determined by the avail-
ability of data and that we recognized that forecasting
skill exhibited in this study could be substantially dif-
ferent from the skill of forecasters in the field.

The 75 volume scans were presented in random or-
der. After judging the first 50 volume scans, participants
took a brief break and then judged the remaining 25
volume scans plus an additional 25 volume scans con-
sisting of the even-numbered volume scans from the
first set of 50, presented in random order. Repetition
of 25 volume scans makes it possible to assess the con-
sistency of the forecasts. No meteorologist reported
noticing the repeated volume scans. All meteorologists
evaluated 100 volume scans and filled out a question-
naire about their forecasting strategy in less than 2 h.

¢. The models

Cognitive processes can be studied in the same way
that other natural processes are studied, i.e., by devel-
oping alternative models and evaluating those models.
Two information processing models were used in this
study, and they were evaluated with regard to two cri-
teria: 1) How well does the model reproduce the judg-
ments of the meteorologists? and 2) How well does the
model capture forecasting skill? i.e., How accurately
does it forecast hail probability? Each model is de-
scribed below.

1) MULTIPLE REGRESSION

A technique called “judgment analysis,” which uses
multiple regression analysis to model the judgments of
experts, has been used extensively in psychology
(Hammond et al. 1975; Stewart 1988). The effective-
ness of this technique is based on a pervasive finding
in research on judgment and decision making: in many
domains of expertise, simple algebraic models can be
used to reproduce the judgments of experts (Slovic and
Lichtenstein 1973). Often a simple linear model works
as well as or better than more complex models (Dawes
and Corrigan 1974). i

Using judgment analysis, models of the following
form were statistically fit tc the forecasts made by each
meteorologist:

Yij =g + bleil + bj‘;(Xil)z + bﬂX,’z
+ b3 (Xi2)? + b Xix + bjuXia

+ bjsXis + bjs(Xis)? + b Xig + €y,
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sample case
4. REFLECTIVITY OF % s s
LEVEELAT e | - 1 3 1 1 1 1 g 1 i
(0.7 deg) dbz 20 25 30 35 40 45 50 §5 60 65
2 . REFLECTIVITY OF _ ,;,’,_ﬁ;{a, = |
DR AR NG o Ep 4
fg\?EELAT MiD L 1 1 1 1 =L [l 1 1 g
(64 km agl) dbz 20 25 30 35 40 - 45 50 55 60 65
3. STRONG ECHO
GRADIENT :]
YES
4. TILT

5. ROTATION

6. FAVORABLE ZDR
SIGNATURE

probabliity of hall (2174 or smail hall > 1 deep)

within 30 minutes =

probablilty of severe hall (2 3/4%)

within 30 minutes =

FIG. 1. Sample of a representation of a volume scan.

where X;4 the tilt for volume scan i (0 = no, | = yes)
3 v i
Y; the forecast maflc by meteorologist j based on §:Z :22 g)lt)z}il?‘gr?;lu?;?:cizc? (no = no, | = yes)and
volume scan -y e; theresidual for meteorologist j on volume scan {
¢; aconstant for meteorologist j
by theweight forcue & The parameters (¢, &u’s and bi’s) of the model
If;‘( the weight for the square of cue k were determined so that the sum of the squared dif-
X1 the low-level reflectivity for volume scan { ferences between the predictions of the model and the
Xi2 the middle-level reflectivity for volume scan i actual forecasts were a minimum; that is, for meteo-
Xi3 the strong echo gradient for volume scan i (0 rologist j, the sum of the (e;7)* over all of the cases is

= no, | = yes)

minimized.
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The squares of low- and midlevel reflectivity and
rotation were included in the model because plots of
the meteorologists’ judgments vs these cues suggested
that most meteorologists used them in a nonlinear
fashion, particularly when they judged the probability
of severe hail. The plots indicated that, in many cases,
the slope of the curve rclating probability forecasts to
cue values increases as the cue increases, as if the me-
teorologists were using the cues exponentially. This oc-
curred much more frequently for the low- and middle-
level reflectivity cues than for rotation. This may reflect
meteorologists’ awareness that dBZ, the measure of
reflectivity, is a logarithmic scale. The quadratic ap-
proximation to the exponential was used because, in
an additive model, the use of exponential transfor-
mations of the cues results in a statistically intractable
model.

The correspondence between the statistical model
and the actual forecasts is given by the multiple cor-
relation ( R), which can range from 0 to 1, with 1 in-
dicating perfect fit. The squared multiple correlation
(R?) indicates the proportion of variance of the fore-
casts that is accounted for by the model.

2) EXPERT SYSTEM

The goal of research on expert systems has been the
development of computer programs that can emulate
the behavior of experts. Expert systems contain a
knowledge base that can be thought of as a model of
how the expert aggregates information. Thus, an expert
system is a model of human information processing.
For reviews of expert systems research, see Waterman
(1986) or Winston (1984). The relation between re-
search on expert systems and judgment and decision
research has been discussed by Hammond (1987a),
Stewart and McMillan (1987), and Carroll (1987).

An expert system called HAIL, developed by Mer-
rem and Brady (1988), was used in this study. HAIL
consists of 250 rules based on the seven cue variables
described in section 3a. Input to the system is provided
by an experienced meteorologist. Qutput consists of
statements ordered from I to 5 (see Table 1). In ad-
dition to diagnosing the presence of hail, the system
provides information about the possibility of tormadoes
and strong winds. As is typical of expert systems, the
250 rules were derived by discussion with only one
person. The rules were designed to represent as closely
as possible the thinking process used by the chosen
expert meteorologist as he diagnoses storm severity.
Since development of an expert system is extremely
time consuming, it was not possible 10 develop one for
the other meteorologists in the experiment.

Since the meteorologists made 30-min probability
forecasts whereas HAIL was designed to provide cat-
egorical diagnoses of hailstorms, it was necessary to
transform the output of HAIL so that it could be com-
pared with the probability forecasts. This transforma-
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TasLE 1. Calibration of the HAIL expert system,

Number of
occurrences of Probability of
Diagnosis Number of hail within hail, given
category* times given 30 min diagnosis
Any Hail

1 251 i0 040

2 60 14 233

3 75 26 347

4 34 12 353

5 33 1 333

Severe Hail

| 251 4 016

2 60 8 133

3 75 7 093

4 34 3 088

5 33 8 242

* Description of diagnosis categories: 1) This storm is not significant
and not severe, Hail of any size and/or gusty winds are very unlikely.
2) There is a very low probability that this cell may be producing
small hail (<% in.) and/or moderately strong wind gusts (3549 ki).
3) This storm is a significant weather producer with small hail (<%
in.) and/or gusty (3549 ki) winds. 4) This storm is a significant
weather producer wth small hail (<% in.) and/or gust (35-49 kt)
winds. There is the possibility that it may also be severe with large
(=% in.) hail and/or strong (=50 kt) winds. 5) This storm is severe
with large hail (% in.) and/or strong (=50 kt) winds.

tion was accomplished by computing the relative fre-
quency, in the original 453 volume scans, of hail or
severe hail within 30 min, given each categorical output
(Table 1). These relative frequencies, which are esti-
mates of the conditional probability of hail given the
diagnosis, were substituted for the categorical diag-
noses. In other words, the output of HAIL was cali-
brated with respect to theé 453 volume scans in the
original dataset, and thus was converted from categor-
ical diagnoses into probability forecasts. This procedure
makes it possible to validate HAIL’s forecasts as prob-
ability forecasts (Murphy 1986).

4. Results

Three types of results are discussed here. First, we
describe characteristics of the meteorologists’ forecasts.
How well do they agree, how consistent are they, and
how accurate are they? Then we report on the corre-
spondence between the regression models and the ex-
pert-system model and the meteorologists’ forecasts.
Finally, we compare the accuracy of the meteorologists
and the models in order to determine how much of
the meteorologists’ skill is captured in the models.

a. The meteorologists’ forecasts
1) AGREEMENT

Correlations among the seven meteorologists’ fore-
casts (A-G) are presented in Table 2. (Correlations

o
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TABLE 2. Agrcement among metcorologists.

Forecast A B C D E F G
Any Hail

A 93>

B 91 (.95)

C .86 83 (89

D .85 .88 87 (.95)

E 90 .88 91 84 (93)

F .84 .88 75 .19 27 (92)

G .88 .89 .82 .85 .86 84 (95)
Range .75-.91 Median .86

Severe Hail

A (.97)

B 93 (.96)

C .87 .88 (.92)

D .84 .90 95  (.99)

E 86 .86 .80 78 (.69)

F .88 92 82 .86 78 (94)

G .87 90 .84 85 92 .85  (.93)
Range .78-.95 Median .86

* Numbers in parentheses are estimates of consistencies based on
25 repeated trials.

can range from —1.0 to +1.0.) Agreement among me-
teorologists was moderate to high for both hail and
severe hail forecasts. For forecasts of any type of hail,
meteorologist F has the lowest level of agreement with
other forecasters, but this is not the case for forecasts
of severe hail.

2) CONSISTENCY

The numbers in parentheses in the diagonal of Table
2 are estimates of the consistency of each meteorolo-
gist’s forecasts. A meteorologist who made exactly the
same forecasts on repeated presentations of the same
information would have a consistency of 1.0. Consis-
tency is estimated by correlating the two sets of judg-
ments of 25 repeated volume scans. The forecasters are
not perfectly consistent, but their consistency is gen-
erally high except for meteorologist E’s forecasts of se-
vere hail. His low consistency is due to a few pairs of
repeated volume scans for which he gave two quite
different probabilities. In one volume scan, his first
forecast was 10% and his second was 50%. If this vol-
ume scan were eliminated, his consistency would
be 0.82.

3) PERFORMANCE

Skill scores, squared correlation coefficients, con-
ditional biases, and unconditional biases for each fore-
caster are presented in Table 3. These indices are de-
scribed in Murphy (1988). The skill score reported in
Table 3 is

SS =t — [MSE(/, x)/MSE({x), x)},
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where MSE(/, x) is the mean square error for the fore-
cast (f) relative to the observed event (x) and
MSE({x), x) is the mean square error for a constant
forecast of () which is the climatological probability
of hail in the sample. This measure reflects the accuracy
of the forecasts rclative to a reference forecast. The
maximum skill score is 1.0, and if the MSE for the
‘forecast is equal to the MSE for the climatological fore-
cast, skill is 0.0.

Squared correlations between forecast probabilities
and dichotomous variables representing the occurrence
of hail and severe hail (O = no hail, 1 = hail) are also
reported in Table 3. The correlation between a prob-
ability forecast and a dichotomous verification variable
is a point bisenal correlation [see Edwards (1976) for
a discussion of the properties of this correlation coef-
ficient] and can range from —1.0 to 1.0. This corre-
lation measures the extent to which forecast probabil-
ities are consistently higher when hail occurs tha: when
it does not. The correlation would be 1.00 if 1) the
forecast probability were always p, when hail occurred,
2) the forecast probability were always p, when hail
did not occur, and 3) p, > p,, regardless of the values
of p, and p,. The correlation will be small when vari-
ation in the forecasts, given occurrence or nonoccur-
rence of hail, is large relative to the total variation in
forecasts. It is not sensitive to the actual probabilities
or to their range; i.e., a forecaster who always gave
probabilities between (.10 and 0.20 could have the
same correlation as another forecaster whose proba-
bilities ranged from 0.50 to 1.00. The correlation mea-
sures the ability of the forecast to discriminate consis-
tently between occurrence and nonoccurrence of hail.
It does not measure “bias,” i.e., the extent to which
the magnitudes of the forecast probabilities are appro-
priate for the weather events being forecast. Two kinds

TaBLE 3. Skill scores, correlation, and bias.

Skill Squared  Conditional Unconditional
Forecaster  score  correlation bias bias
Forecasts of Any Hail
A 046 233 079 .108
B- -.340 181 114 408
C .064 A77 034 079
D -.881 .206 .048 1.039
E .080 219 074 065
F -1.018 125 331 811
G -.704 154 264 594
Forecasts of Severe Hail
A .087 211 098 025
B —-.245 162 .259 149
C -.155 .074 205 024
D -.586 091 466 21
E -015 .092 094 013
F -.730 .128 618 .240
G —.849 119 624 .344

r




30

of bias identified by Murphy (1988) are reported in
Table 3. “Conditional bias™ is related to the slope of
the regression line relating observed events to forecasts.
Conditional bias is zero only when the slope is 1.0.
“Unconditional bias” is related to the difference be-
tween the mean forecast and the mean event. It is zero
only when these two means are equal. Murphy showed

that the skill score is equal to the squared correlation -

coefficient minus the sum of the two bias terms. He
pointed out that since the bias terms cannot be negative,
the correlation coefficient might be considered a mea-
sure of the “potential skill” that might be attained if
all conditional and unconditional biases were elimi-
nated.

Most skill scores in Table 3 are negative and the
maximum improvement over ciimatology is only 8.7%.
The correlation coefficients, hawever, indicate that
forecasters were able to distinguish between hail- and
nonhail-producing storms to some degree. All corre-
lations were positive and significantly different from
0.0 at the 0.01 level of significance. The low skill scores
are due to high levels of conditional and unconditional
bias. Thus, Table 3 suggests that meteorologists can
potentially improve over climatology by more than
20%, but they do not achieve that level of improvement
because of biases in the forecast.

b. Models of the meteorologists’ forecasts
1) REGRESSION ANALYSIS

Table 4 presents squared multiple correlations that
have been adjusted to correct for overfitting of the
regression model due to the number of predictors rel-
ative to the number of volume scans. They indicate
that the regression models account for 80%-92% of the
variance in the meteorologists’ forecasts. In other
words, these simple weighted-sum models can repro-
duce the forecasts with a high degree of accuracy and
account for nearly all the consistent variation in fore-
casts. (See Table 2 for proportion of variance that is
consistent for each forecaster.)

This result may seem puzzling because the meteo-
rologists invariably reported that their judgment pro-
cesses involved nonadditive, synergistic aggregation of
information. The ability of the regression model to de-
scribe meteorologists’ information aggregation pro-

TABLE 4. Adjusted squared multiple correlations for
regression models of forecasts.

Forecastet Any hail Severe hail
A 90 .84
B 92 91
C .86 .81
D .89 .86
E .89 .80
F .83 .90
G .87 91

WEATHER AND FORECASTING
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TABLE 5. Relative weights of cues.
Cuc!
Forecaster LDBZ MDBZ GRAD TILT ROT ZDR
Any Hail
A 21° 24* 13 .03 A7 22°
B 22 27 09 05 .19° A7
C A7 J6° R YA .08 120 .10°
D 28 .30 .10 14 .09 .09
E .18¢ 47 .07 04 .10 14°
F .30 14 04 .02 34 R id
G 19 A2 .00 07 A5 A7
Severe Hail
A A2 6 21 .00 25 06
B .30 .30¢ .08 01 22¢ .08*
C A1 .40°* 23 09 07 .10
D .28* 28* A7 10* A3 05
E .14 .68° 12 00 05 00
F 26° A7 13* 00 ki 12°
G .16* .59 00 .04 15 06

* Significant at the .01 level.

* LDBZ reflectivity of core at low level; MDBZ reflectivity of core at midlevel;
GRAD strong echo gradient (yes, no); TILT tilt (yes, no); ROT rotation or
convergence {m s~*); ZDR favorable ZDR signature (yes, no).

cesses is consistent, however, with the research on hu-
man judgment cited in section 3.

Regression models can be used to infer how the me-
teorologists weigh information when they make fore-
casts. Relative weights of the cues, derived from the
regression models, are presented in Table 5 (see the
Appendix for derivation of weights). These weights are
useful because they can explain, in part, why different
meteorologists arrive at different forecasts. In this study,
the cues were moderately intercorrelated (Table 6),
and, as a resuit, the weights must be interpreted with
caution. The weights that are significantly different
from zero (at the 0.0! level of significance) are indi-
cated in the table.

Although the weights differ among meteorologists,
they indicate that low- and midlevel reflectivity are
generally the most important cues. The notable excep-
tion is meteorologist F. For both hail and severe hail,
rotation is F’s most important cue.

Actual agreement among meteorologists (Table 2)
is greater than would be expected based on the differ-

TABLE 6. Cue intercorrelations.

-

LDBZ MDBZ GRAD TILT ROT ZDR
LDBZ 1.00 .60 62 .28 4l 32
MDBZ 60 1.00 49 33 49 .28
GRAD .62 49 1.00 21 .50 27
TILT .28 33 .21 1.00 .20 06
ROT 41 49 .50 .20 1.00 A9
ZDR 32 .28 27 06 19 1.00
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ences between the weights. This occurs because the cue
intercorrelations (Table 6) are all positive. When cues
are intercorrelated, different weighting strategies can
produce similar forecasts because the cues provide par-
tially redundant information. In this circumstance,
agreement among forecasts may be considered “false
agreement” (Hammond et al. 1975) because it does
not reflect agreement in the underlying forecasting
strategy; i.e., there is agreement in fact but not in prin-
ciple. In the relatively infrequent volume scans when
cues diverge, i.e., when some cues indicate hail while
other cues indicate no hail, disagreements among me-
teorologists will emerge. Thus, meteorologists can be
expected to disagree most when forecasting is most dif-
ficult.

2) THE EXPERT SYSTEM

Correlations between the HAIL expert system and
the meteorologists’ ranged from 0.70 to 0.85 for fore-
casts of any hail and from 0.63 to 0.79 for forecasts of
severe hail. For all meteorologists, the weighted-sum
judgment analysis models reproduced meteorologists’
forecasts better than did the HAIL expert system. This
includes the forecasts of the meteorologist who devel-
oped the rule base for HAIL.

¢. Performance of the models
1) REGRESSION MODELS

To what extent do the regression models of the me-
teorologists capture the accuracy in their forecasts? To
answer this question, the regression models described
above were applied to the 75 volume scans to produce

TABLE 7. Performance of forecasts and models
of forecasts (correlations).

Original Regression
Forecaster forecasts models
Any Hail
A 48 41
E 47 A5
D .45 43
B 43 42
C 42 45
G 39 43
F .35 37
e Severe Hail
A 46 37
B 40 37
F .36 3
G 34 37
E .30 .35
D .30 .34
C .27 34
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forecasts. Performance of these models is described in
Table 7. Only the correlation coefficients which, as de-
scribed above, indicate the potential skill of an unbiased
forecast, are reported here. In the case of the regression
model, unconditional bias of the model is identical to
that of the forecaster. Changes in conditional bias reflect
changes in the correlation coefficient and in the vari-
ance of the forecasts.

The models capture most of the (potential) skill in
the forecasts for six of the seven meteorologists. Only
meteorologist A substantially outperforms the model
that is based on his judgments.

The rows of Table 7 have been ordered from highest
to lowest correlation of the original forecasts to high-
light a pattern in the data. For the least accurate me-
teorologists, the model outperforms the original fore-
casts; but for the most accurate meteorologists, the
model does worse than the original forecasts. Thus,
differences in performance among the models are less
than the differences among the original forecasts. This
suggests that some (small) component of accuracy (or
inaccuracy) may not be captured by the regression
models. Whether that component is simply chance
(lucky or unlucky forecasts) or a systematic, synergistic
process remains to be determined in further research.

The small differences among the correlation coeffi-
cients for different regression models in Table 7 also
reflect a ““flat maximum” effect (Lovie and Lovie 1986;
von Winterfeldt and Edwards 1982) due to intercor-
relations among the cues. When cues are intercorre-
lated, it may not matter much how the information
provided is integrated into a forecast as long as it is
done in a reasonable and consistent fashion. In the hail
data used in this study, the cues were intercorrelated
(Table 6), the relations between the cues and the prob-
ability of hail were all monotonic, and, given the data
provided, there was a high degree of uncertainty about
whether a storm would produce ha... These are all con-
tributing factors to the flat maximum effect.

For any task with these properties, a weighted-sum
model will perform about as well as any other model,
and the magnitudes of the weights do not matter much
as long as they have the correct sign ( Dawes and Cor-
rigan 1974). Researchers have found that the weighted-
sum model generally outperforms humans for these
kinds of tasks because the model is perfectly consistent
whereas the human is not (Goldberg 1969, 1970; Ca-
merer 1981). The model proves superior even though
it does not include complex interactions among the
cues, or “‘synergisms,” which are important to human
experts.

2) EXPERT SYSTEM

For forecasts of any hail, the correlation for HAIL
is 0.38, slightly above the lowest correlation for a me-
teorologist. For severe hail forecasts, the correlation

-p
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for HAIL is 0.41, which is near the level of the best
meteorologist and slightly better than his regression
model.

5. Discussion

This study illustrated how the subjective component
of forecasting can be systematically studied. The design
of the experiment made it possible to investigate the
following characteristics of the forecasts:

e Agreement. Agreement among forecasts was
moderately high in this study. Lack of agreement (see
Lusk et al. 1988, for example) may indicate that some
forecasters are inconsistent or that they are using dif-
ferent forecasting strategies.

e Consistency. If the forecasting process is consistent,
then identical conditions produce identical forecasts.
If the forecasting process is not consistent, then there
is a degree of arbitrariness about the forecasts that will
reduce their accuracy. In this simple experiment, the
forecasts were highly consistent. In general, as the
amount of information and the complexity of a task
increases, consistency decreases. This fact suggests that
forecasts in the field may be less consistent than those
in this experiment.

o Descriptive model. Statistical regression models
provided good descriptions of the forecasts. Further-
more, the regression models were generally as accurate
as the original forecasts. In comparison with a complex
expert-system model, the regression models provided
better approximations to the meteorologists’ forecasts
and were just as accurate.

o Parameters of judgment models. It is useful to de-
scribe judgment processes in terms of weight, function
form, and organizing principle (Hammond et al.
1975). Weights reflect the relative importance of dif-
ferent items of information. The weights estimated in
this study (Table 5) indicated that different meteorol-
ogists attached different importance to the cues. Func-
tion forms describe the relation between each cue and
the forecast. In this study, the reflectivity cues and ro-
tation were related to the forecasts by an exponential
function form. The organizing principle governs the
way that the various cues are organized into an overall
forecast. The organizing principle implicit in the
regression models is additive. The expert system em-
ploys a nonadditive, synergistic organizing principlie.
In this study, the additive organizing principle provided
the best approximation to the meteorologists’ forecasts.

Further research is needed to determine the gener-
ality of the resuits found in this study. In particular,
studies involving more realistic forecasting situations
are necessary. It must be stressed, however, that our
results are consistent with a large body of research and
theory in judgment and decision making. It is likely,
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therefore, that they can be applied to some situations
that arise in operational forecasting,.

6. Conclusion

The importance of studying the subjective judg-
ment processes involved in weather forecasting is sup-
ported by the work of Allen (1982), Allen et al. (1986),
and Allan Murphy and his colleagues (e.g., Murphy
and Winkler 1971; Murphy and Brown 1984). Our
study has shown that research methods used by psy-
chologists to study human judgment processes can be
applied to weather forecasting. The experiment suggests
that the intuitive processes that weather forecasters use
to aggregate information into a forecast can be analyzed
and described in quantitative terms.

A number of interesting and important forecasting
questions can be addressed using systematic methods
borrowed {rom judgment and decision research. For
example, how do novice and experienced forecasters
differ with regard to consistency, relative weights,
function forms, and organizing principle? What is the
effect of advanced workstations on the forecaster's
judgment processes? Does additional information re-
duce the consistency of forecasts, and, if so, how can
consistency be increased? Can feedback about judg-
ment parameters be used to improve forecasting skill
(Hammond et al. 1975; Hammond 1987b)? How
much of the skill of expert forecasters can be captured
by computers?

Continued research’ on cognitive processes in
weather forecasting is likely to prove useful in the design
of “person-machine” systems for weather forecasting.
Design of such systems must be based on realistic views
of both machine and human capabilities. Through re-
search in computer science and artificial intelligence,
machine capabilities are being expanded. Through the
study of human information processing in weather
forecasting, we are gaining an understanding of the
human judgment process.
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APPENDIX
Calculation of Relative Weights

Regression weights do not indicate the relative im-
portance of the cues because (a) the cues are expressed
in different units and (b) there are two weights for each
of the continuous cues because the squared terms were
included in the regression analysis. The following pro-
cedure was used to calculate the relative weights listed
in Table 5.

1) For each forecast, regression weights for the
model described in section 3¢ were computed.

2) For forecast j, the continuous cues (low-level re-
flectivity, midlevel reflectivity, and rotation) were
transformed as follows:

Je(Xiz) = bpXu + bjinzk,
for i=1-75 and k=1,2,5.

This 1ransformation combines the two terms for the
continuous cues into a single term.

3) A second regression analysis was computed using
the three transformed cue variables and the three binary
cues to predict the forecast. The regression equation

- was

Yi= ¢+ by Si(Xin) + bpf2(Xn2) + bpXis
+ bjaXia + bjs fs(Xis) + b Xis + €.

This form of the regression equation has only one
weight for each cue. It is a simple algebraic transfor-
mation of the original regression equation, and the R’s
were identical to those obtained in the original analysis.

4) The regression weights for the standardized form
of the regression equation (the beta weights) were
summed, and each beta weight was divided by that
sum, ( The standardized form of the regression equation
compensates for differences in units by transforming
each variable so that its mean is 0.0 and its variance is
1.0 in the sample.) This calculation gave the relative
weights presented in Table 5.

Several methods have been proposed for computing
relative weights in judgment analysis. Alternative
methods are disgussed in Darlington (1968) and Stew-
art (1988). -
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Page 3
Judgment in a Dynamic Task: Microburst Forecasting

The major goals of this research are to (a) study mature professionals
engaging in dynamic, and thus representative, task conditions, (b) apply
lens model theory to these dynamic conditions, (c) learn how judgments are
changed in response to changing conditions, and (d) utilize a hierarchical
judgment model to investigate the judgment process from perception of data
to final judgment. The results indicate that (a) agreement regarding
secondary cue values is modest, not because of differences in perception of
primary cue values but because of differences in inferences drawn from
them, (b) magnitude of agreement for each secondary cue is related to the
proximity of the cue to primary rue data, and (c) agreement in probability
Judgments is higher when secondary cue values are specified. There was
some evidence to suggest an increase in agreement among forecasters’
judgments as more information relevant to a judgment was received.

Finally, increased information over time resulted in more extreme

probability judgments for half the forecasters.

KEYWORDS: lens model, dynamic tasks, experts, forecasting
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Virtually all of the research on judgment and decision making has been
restricted to studying the behavior of immature subjects in restricted
laboratory conditions involving static, unchanging task conditions. But
many, if not most, important judgments and decisions are made by mature
professionals in response to changing task conditions. The major goals of
the research reported here are (1) to gemedy these limitations by studying
professional experts engaging in a complex, dynamic task conditions
representative of their normal working conditions, (2) to ascertain whether
the results from lens model theory and research in static tasks generalize
to these circumstances, (3) to learn how judgments are changed in response
to changing conditions, and (4) to investigate the judgment process from
the perception of data to the final judgment through the use of a
hierarchical model. The context of the research was severe weather
forecasting, specifically, the short-term forecasting (0-30 minutes;
Roberts and Wilson, 1989) of microbursts (brief, localized windstorms that

are a potentially fatal hazard to aircraft).

The Microburst Forecasting Process

Weather forecasting in general, and microburst forecasting in
particular, offers an opportunity to investigate the entire judgment
process because it involves (a) the visual perception of data from numerous
sources, (b) the assessment of the significance of those data as a
determinant of the final judgment, and (c) the aggregation and integration
of all the information, including intermediate inferences, to arrive at (d)
a final forecast--all with respect to information that is changing over

time, .
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The opportunity for studying the cognitive activity of forecasters
coping with a dynamic task under representative conditions immediately
raises the question of the generalizability of theory and results from
previous lens model studies of judgment in static tasks. Several such
studies were carried out with the same forecasters who were studied under
dynamic task conditions prior to the present study, one of which is
particularly relevant and is described below as Study 1 (Lusk, Stewart and
Hammond, 1988). 1In addition, a hierarchical lens model was constructed to

trace out the judgment process from data perception to final judgment.

A Hierarchical Model of the Microburst Forecasting Process

A hierarchical lens model depicting the steps between the storm
environment and a judgment about microbursts at a given time is presented
in Figure 1. This framework is derived from social judgment theory
(Hammond, Stewart, Brehmer, and Steinmann, 1975; Brehmer and Joyce, 1988),
which describes the relationship between two systems: the task system in
the environment and the cognitive system of the decision maker. The
environment of the microburst forecasting task is represented as Phases A,
B, and C in Figure 1, which is an adaptatiorn. of Brunswik’s lens model
(Brunswik, 1956; Hammond, et al., 1975; Brehmer and Joyce, 1988.) Phase A
represents the physical mechanisms that underlie the weather phenomenon at
Phase B. The weather produces objective radar data at Phase C. The
cognitive system of the forecaster begins operating at the link between
Phases C and D. After reading the perceptual data corresponding to the
primary cues at Phase D, the forecaster must infer values of the secondary

cues (hgpothesized precursors of microbursts) at Phase E and integrate them
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into a judgment, Phase F, about the likelihood of the occurrence of a
microburst. The hierarchical nature of the model implies that error at any
phase can be passed on tc later phases. Therefore, the upper limit of the
accuracy of the final judgment (Phase F) depends to a large extent upon
cognitive activities at earlier phases (D and E). (A statistical
elaboration of this point in the framework of the lens model is presented
in Stewart, 1989; Hammond, et al., 1975; Hammond and Summers, 1972. The
concept of limits placed on accuracy by measurement devices is also

recognized in meteorology; see, for example, Tribbia and Anthes, 1987.)

Insert Figure 1 about here

Study 1 (Lusk et al., 1988) investigated the link between Phases E and
F. Forecasters were presented secondary cue values and asked to make
judgments regarding the probability of a microburst. Thus, it provided a
"best case scenario" in that it eliminated any error that might occur in
the perception of the raw data (primary cues) or secondary cue values
(microburst precursors) at Phases D or E. According to the research
meteorologists/forecasters who were the subjects in this study, the
secondary cues include (a) "descending reflectivity core", (b) "collapsing
storm”, (c) "organized convergence above cloudbase", (d) "organized
convergence/divergence near cloud base", (e) "reflectivity notch", and (f)
"rotation." In Study 1, seven forecasters judged the probability of the
occurrence of (. microburst from a sample of profiles (see Figure 2)

representing hypothetical storms.

|
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Insert Figure 2 about here

Analyses of those judgments indicated that the'forecasting process
could be adequately represented by a linear model. The forecasters,
however, believed that they were in fact employing a nonlinear model. The
model offered by the forecasters was tested but did not predict the
judgments made by forecasters as accurately as the simple linear model,
thus reproducing the results often observed in similar studies (see e.g.,
Dawes, 1982; Einhorn, Kleinmuntz and Kleinmuntz, 1979; see also Pitz and
Sachs, 1984; Dawes, Faust, and Meehl, 1989, for a review.) Most important,
examination of the weights placed by forecasters on the cues when making
judgments revealed that forecasters placed the greatest weight on the cue
"descending core," a result with which the forecasters concurred. Only
modest agreement was found among the forecasters regarding their microburst
probability judgments (mean correlation for the seven forecasters in Study

1 was .74).

Generalization from Static to Dynamic Tasks

Psychological vs. Expert Hypothesis

Because the above results were obtained from a best case scenario in
which all forecasters were presented with the same precursor values, no
error could enter into the microburst judgment at Phases D and E of the
hierarchical model (see Figure 1). Thus, previous work based on lens model
theory (Brehmer and Joyce, 1988; Hammond et al., 1975) would lead to the

prediction that in the forecaster’s typical work setting errors of
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observation will occur at Phase D and errors of inference will occur at
Phase E. In addition, lens model theory predicts that inter-subject
disagreement would be lower under these conditions at Phase F. Because
this hypothesis is a generalization from previous psychological research we
shall call this the Psychological Hypothesis. Alternatively, since experts
in a substantive field rarely, if ever, empirically investigate inter- and
intra-observer agreement in judgment, and because of the richer information
conditions in actual work environments (in this case the actual radar
information the forecasters much prefer), experts can be expected to argue
that access to increased, more representative information at Phases D and E
would result in increased agreement--contrasted with the best case
scenario—at Phase F among the forecasters. We call this view the Expert
Hypothesis. An additional aim of the present study, therefore, was to
discover whether the Psychological or Expert Hypothesis was more nearly
correct—under dynamic task conditions representative of the forecasters’

normal work environment.

A further generalization from lens model theory is that those
precursors (secondary cues) that are more conceptual in nature would
produce more disagreement than those precursors that are more readily
reducible to point coincidences on the radar screen. Thus, for example,
because the precursor "descending core" is difficult to reduce to specific
lines or contours on the radar screen, it should produce more disagreement
than such precursors as "convergence" of wind flows. Put otherwise, the
more subjective secondary cues should evoke more disagreement than the more
objectively determined, readily observable secondary cues. The hypotheses

below répresent a more specific form of these general hypotheses, and in
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addition, are framed as Psychological Hypotheses which, if disconfirmed,

would lend support to our formulation of the Expert Hypothesis.

Specific Hypotheses

Hypothesis 1: Agreement among forecasters regarding probability (forecast)

judgments (Phase F) will be lower in the full representation
of the task than in the best case scenario study (Lusk et
al., 1988, Study 1), because of error introduced at the

inferential phases in the judgment hierarchy (Phase E).

Hypothesis 2: Agreement among forecasters regarding secondary cue

Hypothesis 3:

(precursor) values (Phase E) will be modest, not because the
forecasters perceive the radar data differently, but because
the forecasters draw different inferences about the secondary

cues from the radar data.

The magnitude of agreement among forecasters regarding
precursor judgments at Phase E will vary by precursor because
of differences in the degree of subjectivity in cue

determination.

Effects of Updating Information in Dynamic Task Conditions

The dynamic nature of the task conditions in which forecasters

normally operate makes it possible to investigate the effect of the

updating and accumulation of information over time on (1) agreement, (2)

changes in the forecasts, and (3) confidence.

o
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Expert Hypotheses

Experts would argue that increased information provided by a series of
time-dependent observations allows for greater understanding of the events.
Therefore, as the amount of information increases over time, their
judgments will begin to converge, for example, agreement will increase
regarding microburst probabilities. Experts would also argue that the
accumulation of information over time (and increased understanding) will
lead them to become more extreme in their judgments regarding the
probability of a forecast (move closer to either 0 or 1.0). 1In addition,
forecasters should become more confident as a consequence of increased
information over time. 1In short, dynamic task conditions should lead to
(a) increased agreement, (b) more extreme judgments and (c) greater

confidence.

Psychological Hypotheses

From a psychological point of view, accumulation of information over
time is unlikely to lead to increased agreement because, as the results of
Study 1 indicated, even in the best case scenario the forecasters did not
agree in their precursor judgments and, moreover, were not aware of their
differences. Thus, further information would be as likely to drive them
apart as bring them together. That is, new information over time is as
likely to reinforce the components of the judgment process that produce
disagreement as it is likely to reinforce the components that produce
agreement. Also, forecasters are not likely to become more extreme in
their judgments because, as Study 1 showed, the intra-forecaster judgment

policies have such & large error component that new information is likely
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to have little systematic impact but is likely to be lost in the "noise" of
the experts’ judgment system. And although the forecasters may become more
confident over time, their confidence will be unjustified inasmuch as the
agreement in their judgments will not increase. Again, the specific
hypotheses are framed as Psychological Hypotheses, and their
disconfirmation would lend support to the expert point of view (with the

exception of Hypothesis 6, as noted below).

Specific Hypotheses

Hypothesis 4: Agreement among forecasters'’ precursor and probability
judgments will not increase over time because the empirical
significance of changing information is not common among the
forecasters.

Hypothesis 5: Individual forecaster’s probability judgments will not become
more extreme over time because no explicit instructions exist
for how new information should change judgments.

Hypothesis €: Forecasters will become more confident in their precursor and
forecast judgments. (Note: in this case, the Psychological
and Expert Hypotheses are the same but the reasons for them

differ.)
Method

In keeping with lens model theory, the method employed was that of
representative rather than systematic design (Brunswik, 1952, 1956;
Hammond, 1966). That is, an effort was made to represent the actual

conditipns under which the research meteorologists made their forecasts of

e

30




Page 12

microbursts rather than varying one (or n) variable(s) at a time. Each
subject’s performance was studied separately over six potential microburst
cases. Although this sample of cases is admittedly smaller than desirable,
many hours of technical work were required to remove each case from the
file tapes and observation of the six cases required many hours of the
meteorologists’ time. Thus, high operational costs limited the size of the
sample of cases. The six cases did, however, provide a total of 25 data

points for evaluation, as the procedure described below explains.
Procedure

The subjects in this experiment were four research meteorologists from
the National Center for Atmospheric Research in Boulder, Colorado. All

four meteorologists had participated in Study 1 (Lusk et al., 1988).

The experiment was conducted in two phases. The first phase includes
two cases (one microburst and one null case), after which a preliminary
assessment of the procedure and results was conducted. Both the
psychologists and meteorologists decided that further data would be worth
acquiring and the experimental procedure was slightly modified to collect
those data. The procedures are detailed below. All procedures were
planned and carried out in consultation with a research meteorologist,
familiar with the problems and procedures of microburst forecasting, who

did not serve as a subject.

During each experimental session, the forecaster was seated in front
of a large computer terminal used to present color Doppler radar displays.

The expgrimenter was seated in front of a computer terminal that was used
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to run the experimental session. At the first session of each phase of the
experiment, the forecasters were presented with instructions regarding how
the experiment would proceed. The forecasters were then presented with a
"volume" of radar data, based on 13 radar scans through the height of the
atmosphere. After each volume they made judgments of precursor values and
the probability of a microburst. This procedure was repeated until

completion of each case.

The Cases

Six cases were used: two in the first phase and four in the second
phase. Half of the cases in each phase were null cases and half were

microburst cases.

Each case was arranged on a tape in consecutive volumes, -each of which
scanned through the height of the storm cell. The volume scans were
repeated every 2.5 minutes. 1In the first phase, Case 1 included six
volumes. The data for Case 2 spanned eight volumes. However, one volume
was skipped due to faulty radar data. In addition, one volume in Case 2
only included the lower seven scan levels. However, judgments were still
collected for that short volume. 1In the second phase all cases included
four volumes of data. In both phases, each case terminated before the
microburst was evident on the lowest scan or before any obvious or
substantial decrease in the intensity or height of the cell in the null

cases (i.e., before the outcome became apparent).

e
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The Judgments

The forecasters were asked to make judgments of the six precursor
values they had previously indicated to be the cues'used in forecasting
microbursts: descending core, collapsing storm, convergence/divergence
above cloud base, convergence/divergence at or below cloud base, notch, and
rotation (Lusk, et al., 1988, Study 1). In addition, forecasters made
judgments of the probability of a microburst occurring in the next 5 to 10

minutes.

The judgments regarding precursor values and probability of a
microburst were made on the same scales as utilized in Study 1 (see Figure
3). In addition, to the right of each rating scale was a blank for the
forecasters to insert their confidence in their precursor judgments
(corifidence ratings for the probability judgments were not collected in

Phase 1, but were collected in Phase 2).

Insert Figure 3 about here

In the first phase, judgments were made after each volume. Therefore,
judgments were made six times for Case 1 and seven times for Case 2. 1In
the second phase, judgments were witheld for the first volume. This change
was made because (1) many of the precursor judgments were difficult to make
with data at only one time period, and (2) to save time so that more cases
could be presented. Thus, because there were four volumes for each case in
Phase 2, three judgments were made for each of the four cases in the second
phase. This resulted in 25 possible data points for each subject (some
subject% had 24 data points for some precurscr judgments due to the short

volume in Case 2).
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The Experimental Session

For the first phase, the instructions explained how the experimental
sessions would proceed: each case would consist of several volume scans
over time of a storm cell that did or did not produce a microburst,
starting with the lowest scan at the earliest time. After observing each
scan, the forecasters were to tell the'experimenter that they were ready
for the next level scan. The forecasters were given up to thirty seconds
to view each scan. After completion of a volume in this manner, the
forecasters filled in the rating sheet. 1In addition, the instructions

stated, in part:

At the time of the first volume you can assume that a
microburst is not presently occurring. Please assume before
observing the first scan, that on the basis of prior information
(morning soundings, tec.) you have already reached the conclusion
that the likelihood of a microburst on this day is .50. Then
adjust your probabilities of a microburst after observing the
radar data. Each case will terminate prior to evidence of
outflow from a microburst or evidence that the storm is obviously
dissipating.
Finally, the forecasters were given instructions to "think aloud" and their

verbalizations were tape recorded.

The instructions for the second phase explained the changes in the
experimental procedure. The forecasters were informed that they would
receive sounding data, view only four volumes of data, and make judgments

only after the second through fourth volumes. In addition, the

34

-




Page 16

instructinns explained that the scans would be presented continuously and

that they would not need to think aloud.

The forecasters were provided with blank paper for taking notes and
felt-tip pens to mark the CRT screen. At the beginning of each case, the
forecasters were given the coordinates for the storm cell they were to

attend to.

Prior to presentation of each case in the second phase, the
forecasters were given the eleven o’clock sounding of the atmosphere for
the day from which that case was drawn. The subjects were then asked what
the probability of a microburst occurring was, based on the sounding

information alone.

In the first phase, half of the forecasters were presented with Case 1
first, and half were presented with Case 2 first. In the second phase; the
cases were arranged on a tape in a fixed order. Each forecaster began with

a different case, but otherwise the order of presentation was fixed.
Results

Each hypothesis is stated in terms of the psychological point of view.
Thus, falsification of the hypothesis lends support to the alternative, the

Expert Hypothesis.

Hypotheses Regarding Generalization from Static to Dynamic Tasks

Hypothesis 1: Hypothesis 1 states that agreement among forecasters
regarding probability judgments (Phase F) will be lower than in the best

case scénario study because of error introduced at Phase D in the judgment

-p

hierarchy. The correlations between judgments of each pair of forecasters
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participating in both the best case scenario study and the present study
are presented in Table 1 (for the best case scenario study) and Table 2
(for the present study). The mean correlation from the best case scenario
study for the four forecasters participating in both studies is .67 (from
Table 1) and the mean correlation from the present study is .49 (from Table
2). (Note that mean correlations presented in this paper were computed by
converting raw correlation coefficients to Fisher’s Z, computing a mean,
then converting the mean back to an r value.) Thus, comparison of the
correlations in Table 1 to those in Table 2 indicates that the latter are

substantially lower than the formar, providing support for Hypothesis 1.

Insert Tables 1 and 2 about here

Hypothesis 2: Hypothesis 2 states that agreement among forecasters
regarding secondary cue values will be modest, not because the forecasters
perceive the radar data differently, but because the forecasters integrate
those data differently. The data used to test this hypothesis were the
secondary cue judgments made after each volume. The correlations between
the judgments of each pair of forecasters were computed for each precursor

and are presented in Table 3.

Insert Table 3 about here

The data in Table 3 clearly indicate a lack of agreement between
forecasters regarding the precursor judgments. Although many of the
correlations are substantially larger than zero (and are, in fact,
statistécally significant), they are all substantially lower than

acceptable limits for practical use, providing support for Hypothesis 2.
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In order to support our assertion that disagreement at Phase E did not
occur because forecasters perceive the data differently at Phase D,
forecasters’ written notes were analyzed. Three of the four forecasters
took notes regarding the maximum reflectivity values present at particular
scan levels. To compute agreement, each pair of forecasters was
considered. An agreement was counted each time both forecasters of the
pair recorded a reflectivity value witﬁin 5 dBz of each other. The
percentage of agreement was computed by dividing the number of agreements
by the number of times both forecasters in a pair recorded some maximum
reflectivity value. For Forecasters A and B, the agreement regarding
maximum reflectivity values was 96%, 93% for Forecasters A and D,.99% for
Forecasters B and D. In short, agreement among forecasters with regard to
the purely objective data was very high, lending further support to

Hypothesis 2.

Hypothesis 3: Hypothesis 3 states that the magnitude of agreement
among forecasters regarding the various precursor judgments will vary by
precursor because of differences in the subjectivity involved in the
judgment. Examination of Table 3 indicates a higher degree of agreement on
some precursors than on others. Each correlation in Table 3 was converted
to a Fisher’s Z, a mean was computed for each precursor matrix and the mean
Z was then converted back into a correlation coefficient. These mean
agreement correlations for each precursor are presented in Table 4. As
hypothesized, agreement regarding precursor values did vary considerably,
with highest agreement for the two convergence precursors, second highest
for collapsing storm and notch, lower for rotation and the lowest agreement

was for®judgments of descending core. It is noteworthy that descending
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core has the lowest mean agreement and that some of the correlations in
Table 3 are actually negative! This result is important because our
previous work indicated that forecasters weighted this precursor most
heavily in arriving at microburst probability judgments (Lusk et al., 1988,

Study 1).

Insert Table 4 about here

Hypotheses Regarding Effects of Updating of Information on Judgments

Hypothesis 4: Hypothesis 4 states that agreement among forecasters’
precursor and probability judgments will not increase over time bécause the
empirical significance of new information is not common among the
forecasters. To investigate this hypothesis, agreement among the
forecasters was computed separately for judgments from the last three
volumes of each case. The initial data for these analyses were judgments
for each of the last three judgment times (volumes) in each case.
Specifically, "Time 1" included judgments from volume 4 for Case 1, volume
6 for Case 2 and volume 2 for the other four cases. Likewise "Time 2"
included judgments from volume 5 for Case 1, volume 7 for Case 2 and volume
3 for the other cases. Finally, "Time 3" included data from the last
volume of each case. This resulted in a total of 18 data points for the
analyses. The means for each time period were computed as in the above

analyses.

2
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The means of these values for each precursor and microburst forecast
are presented in Table 5. The mean values reported for each time in Table
5 reflect the overall lack of agreement, prevalent even after the final
volume (Time 3). However, with the exception of descending core and notch,
this measure of agreement does indeed increase over time. Paralleling
similar results in overall agreement (Hypothesis 3), the convergence
judgments show the most marked increase in agreement over time, while the
descending core judgments show the least. Also, the probability of
microburst judgments shows an increase over time. These analyses do not
provide clear support for Hypothesis 4 because there are some instances of
movement toward similar judgments with the accumulation of more e?idence.
Nevertheless, the agreement at Time 3, while improved from previous times
(for some cues), is still lower than is useful in an operational setting
(ranging from .18 to .85). 1In sum, Hypothesis 4 is disconfirmed, but the

evidence is weak.

Insert Table 5 about here

Hypothesis 5: Hypothesis 5 states that forecasters’ probability
judgments will not become more extreme over time because no explicit
instructions exist for how new information would change judgments. To test
this hypothesis, a separate analysis of variance was performed for each
forecaster utilizing the last three judgment times as in the above
analyses. It was expected that more information should move forecasters
toward a judgment of either 0 (for null cases) or 1 (for microburst cases).
Therefore, before conducting the analyses, the probability judgments were

converted to absolute values of mid-point deviations. That is, the scale
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mid-point (.50) was subtracted from each probability judgment and the
absolute values were utilized as the data for the analyses. The means of
these values for each time period are presented in Table 6. Two different
analyses of variance were performed for each forecaster. The first was an
omnibus F test and the second was a linear contrast. None of the F ratios
for either type of analysis was statistically significant (at the .05
level), although for Forecasters B and.C the means are clearly increasing

(p-levels for the linear contrast were .12 and .10, respectively).

Insert Table 6 about here

Collapsing across subjects, a significant effect was found for time
for the omnibus test (F(2,6) = 8.55, p = .02) and the linear contrast
(F(1,6) = 13.64, p = .01; in these analyses time was treated as a repeated
measure). These results do not clearly disconfirm Hypothesis 5; two

subjects were sensitive to the accumulation of evidence while two were not.

Hypothesis 6: Hypothesis 6 states that forecasters will become more
confident in their precursor and probability judgments over time because of
increased information, but unjustifiably so, inasmuch as their agreement
will not increase. The data for these analyses were confidence ratings for
the last three judgment times of each case as in the above analyses. The
means of the confidence ratings over time for the cues are presented in
Table 7. The top of the table displays the means for each forecaster
across time and the bottom includes the means for each cue separately
across forecasters. Because Hypothesis 6 asserts an increase in confidence

over time, both omnibus tests and linear contrasts were conducted. 1In
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addition, the effects of cue type and the interaction of cue with time were
examined. Each two-way analysis of variance was conducted for each

forecaster separately as well as for all forecasters combined.

Insert Table 7 about here

The omnibus effect of time was significant (F(2,90); p < .05) for each
of the forecasters except for Forecaster B. The linear effect of time (a
more precise test of the hypothesis) was significant for Forecasters C and
D (F(1,90); p < .05) and marginally significant for Forecaster A (p = .11).
In the analysis across subjects, the omnibus test of time was maréinally
significant (F(2,6) = 3.19, p = .11), while the linear contrast was

statistically significant (F(1,6) = 6.09, p < .05).

The effect of cue type was significant for Forecaster B and Forecaster
D (F(5,90); p < .05) and marginal for Forecaster A (F(5,90); p = .06). The
means are presented in Table 8. As Table 8 indicates, there are
substantial individual differences in expressions of level of confidence.
The effect for cue in the analysis that included all subjects was not
significant (F(5,15) = .54, p = .75). The interaction between cue and time
was not significant in the individual subjects’ analyses, but it was
significant when collapsing across subjects (F(10,30) = 2.23, p < .05). As
can be seen from the bottom of Table 7, the linear effect of time was not

as great for the two convergence cues as for the other cues.

Insert Table 8 about here

. pe
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Table 9 presents the mean confidence ratings for the probability
judgments. No significant effects were found on either the omnibus or
linear contrast tests for any of the forecasters separately. However,
since confidence judgments for the probability judgments were collected in
Phase 2 only, the power of these analyses is relatively low. 1In fact, with
the exception of Forecaster D, the means are in the predicted direction.
Moreover, when the data are pooled across subjects the omnibus test
indicates a marginal effect of time (F(2,6) = 4.64, p = .06), and the

linear contrast indicates a significant effect (F(1,6) = 8.65, p = .03).

Insert Table 9 about here

These analyses indicate support for Hypothesis 6. Across cues, two of
the four forecasters’ confidence ratings do increase over time. One of the
remaining forecasters’ ratings are at the ceiling (Forecaster B) and
therefore cannot show the effect. The interaction between time and cue
type indicates that the effect of time on confidence was greatest for
descending core and collapsing storm and least for the two convergence
cues. Finally, three of the four forecasters’ confidence in their
probability judgments did increase over time (though not statistically

significant), providing further support for Hypothesis 6.

Summary of Results

Hypotheses Regarding Generalization

The first three Psychological Hypotheses were not disconfirmed. That
is: (1) agreement in forecasts was lower under representative task

conditions than in the best case scenario because of error introduced at
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the inferential (secondary cue) level; (2) agreement among the forecasters’
judgments of secondary cue values in the hierarchical model was modest, not
because of difference~ in “"he perception of the radar data but because of
differences in inferer c¢s drawn from them; and (3) the magnitude of
agreement at the secondary cue level varied by secondary cue; the greater

the subjectivity the greater the disagreement. Because these hypotheses

are derived from lens model theory and research in static tasks, the
results constitute a significant generalization to a complex dynamic task

representative of that normally encountered by mature professionals.

Hypotheses Regarding Updating of Information

The results regarding the first two of the three Psychological
‘Hypotheses concerning the effects of updated information on judgments in
the dynamic task do not yield clear disconfirmation, although the third was
more clearly disconfirmed. That is, in regard to Hypothesis 4, the degree
of agreement among the forecasters did increase as information was
accumulated over time (although the increase was slight for four of the six
precursors and for the forecast judgments). In regard to Hypothesis 5,
there was some evidence to suggest that the forecasters’ probability
judgments did become more extreme. Again, however, the evidence was weak;
two of four forecasters’ judgments did not become more extreme. With
regard to Hypothesis 6, there is some evidence that the forecasters do
become more confident as information is accumulated over time. In short,
the evidence related to the hypotheses concerning judgments of the effects
of updated information was far from convincing. The ambiguity of these
results, together with the small sample of cases, certainly argues for more

research on the impact on judgments of new information received over time,
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Verbal Protocols

Examples of the verbalizations are provided in Appendix A. The
protocol.s indicate that during observation of the radar data the
forecasters were primarily focusing on both the proximal and inferential
levels (Phases D and E) in the hierarchical judgment model (see Figure 1).
That is, the verbalizations primarily concern noticing the radar data such
as the maximum reflectivity values, convergence or divergence, and making

note of the occurrence of features such as a notch at each level scan.

Although these verbalizations are skimpy, if taken at face value they
further support the conclusion that the lens model theory does generalize
to behavior in dynamic tasiks. That is, the verbalizations indicate that
the forecasters provide a dichotomous yes or no value regarding inferences
about the occurrence of each precursor, then decide exactly what value to
circle on the scale. Thus, the cognitive process for making the
probability of a microburst judgment was not verbally expressed which
suggests that it takes place on an intuitive level. No calculations or
applications of a principle or formula were ever observed; in short, no
analytical work for organizing the information was evident in the
protocols. (See Hammond, Hamm, Grassia, and Pearson, 1987,; Hammond, 1988,
for a discussion of intuitive and analytical cognition within the framework
of lens model theory.)

Discussion

Theory

The most important theoretical finding is that lens model theory can

-

be genetalized, at least in part, to expert judgments made in complex

dynamic task conditions. Under representative conditions a higher level of
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disagreement regarding probability judgments was found than in the best
case scenario. Agreement at the primary cue level was found to be very
high while agreement at the secondary cue level was only moderate.
Moreover, agreement was much higher for some secondary cues than others,
indicating differences in proximity of secondary cues to the primary cue
level. The notion of differential proximity may Jead to a more
sophisticated version of the hierarchi&al model, with secondary cues at
Phase E distanced from the primary cues at Phase D according to their
respective inter- or intra-observer reliabilities. Future research should
investigate the mechanisms underlying the proximity of secondary to primary
cues and the extent to which these and other generalizations hold'when the

limitations mentiored above are reduced.

Methodology

The hierarchical model also helped in guiding the methodology. Data
were collected to investigate potential error at each phase in the
hierarchy involving judgment processes. The most important aspect of our
methodology was the use of representative design in contrast to
conventional systematic design of the study, which offered several
advantages. By virtue of studying each meteorologist separately over a
sample of events (instead of the conventional technique of testing the
effect of restricted stimuli presented to a large population of subjects),
it was possible to learn that certain results obtained from lens model
theory and research in static task conditions generalize to dynamic task
conditions involving four mature professionals in circumstances highly

representative of their work situation. These generalizations are

r

reflected principally in results concerning agreement among the experts,
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and thus in the results that favor acceptance of psychological hypotheses
over expert hypotheses. These issues could not have been addressed by

conventional research design.
Results

The results provided a sharper focus on the reasons for disagreement
among experts. The hierarchical model'delineates each phase at which human
cognitive processes operate and therefore the points at whicii error tan be
introduced. The research assessed agreement at each point in the hierarchy
and through this procedure it was determined that very little disagreement
occurred at the level of perception of the raw data. However, a éreat deal
of disagreement occurred regarding judgments of both precursors and
microburst forecasts. Identification of the particular precursors
demonstrating high levels of disagreement makes it possible to focus on the
variables with the greatest potential for improving judgment. Thus a
hierarchical model that separates inferences at an intermediate level from
raw data has methodological, theoretical, and practical significance

deserving of further work.

Finally, the results regarding the effect of updated information on
judgments may have important practical implications, as well as theoretical
implications for researchers involved in dynamic tasks. Experts often
believe that more data provide a better understanding of a phenomenon,
which leads to better predictions. The results of this study suggest this
may not be the case, at least in situations where more information is

updated information.

E
-
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Future Directions

Although we believe the present study of dynamic decision making has
demonstrated its usefulness, there is much that it does not do. For
example, it is based entirely on the study of functional relations between
cues and judgments over time; it does not address the topic of pattern
recognition. Nor does it investigate the differential role of intuitive
and analytical cognition, even though microburst forecasts are based on
both analytical, scientific understanding derived from scientific research
and intuitive judgments derived from experience. (See Hammond, 1988, for a
discussion of the differential role of functional relations and pattern
recognition, as well as intuition and analysis in dynamic tasks.) In
addition, the difference between the logic of understanding and the logic
of prediction (de Montmollin and De Keyser, 1986; see also Brehmer, 1987)
is not developed. This topic, hardly touched, is bound to be of importance
in circumstances such as weather forecasting in which the decision makers
lave a scientific basis for understanding that must be combined with an
experiential basis for prediction. Nor have we referred to the nature of
the "ecological interface", (Rasmussen and Vicente, 1987; see also Schwartz
and Howell, 1985) that is, the design of the display of information and its
potential for enhancing or reducing the efficacy of dynamic decision
making. Also omitted is a discussion of the role of feedback, either
cognitive or of the simple outcome form, and its effect on change in
judgments (Balzer, Doherty, and O’Connor, in press). And, of course, the
small sample of cases rules out a discussion of the accuracy or skill of
the forecaster, and the small number of forecasters studied imposes limits
on genetalization to other forecasters. We mention these issues not only

to caution the reader, but to emphasize the complexity that will have to be
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addressed in future efforts if we are to advance our understanding of

judgment and decision making in dynamic tasks.

A further issue concerns the distinction between relative and absolute
expertise. In the present case, the meteorologists were indeed experts in
the relative sense; they probably have more &nowledge and experience than
any other meteorologists regarding the microburst phenomena and the vast
technology associated with their detection. On the other hand, these
meteorologists do not claim to be experts (in fact, resent the use of the
term) in the absolute sense; they insist that they do not have full or even
satisfactory knowledge about microburst events; rather they describe
themselves as in the process of studying them to make predictions of these
hazards a practical success. Their situation is analogous to the research
physician who understands a specific disease better than anyone else, but
who does not pretend to have sufficient knowledge to make highly accurate

diagnoses or prognoses.

This distinction is important not only because of the need to be clear
about the particular form of expertise under study, but also because these
different forms of expertise place different demands on judgment
researchers. In the case of absolute expertise, the primary goal of
judgment researchers will be to discover how such expertise is applied to
various types of problems (e.g., high vs. low uncertainty conditions). 1In
the case of relative expertise, on the other hand, the primary goal of
judgment researchers will be to aid the experts to discover what features
of the situation are frustrating or enhancing their efforts to improve the

status of their expertise. And once discoverel, the researcher will want

r

to convey that information to the experts. In the present study of
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relative expertise, the primary goal was achieved, but it is doubtful that
the communication process was successful. The meteorologists showed
interest in the hardly disputable facts of disagreement in their use of
information, claiming that in the present state of their knowledge such
disagreement was not surprising. Nevertheless, in subsequent research they
continued (to our surprise) to make subjective judgments about pretursors
without examining the extent of, or reasons for, their disagreement on
precursor judgments in both empirical research and operational tests of

forecasting accuracy.

Disagreement of the magnitude observed under representative task
conditions raises serious questions about the use of experts——usually a
single expert!-—as the basis for an expert system, as is customary in work
in the field of artificial intelligence (see Adelman, in press, for a
detailed discussion). 1Indeed, one of the forecasters who served as a
subject in this study had been used as an expert in the development of an
Al expert system for forecasting the occurrence of microbursts. Obviously,
had a different forecaster been used, a different system——producing

different forecasts——would have been developed.

T
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Appendix
Example Protocols for Study VI

Subject 1: Case 1

S: Okay where are we? The number of the next volume, 4. Ah what'’s
happening? Uh very weak divergent flow at the surface, very weak, only
three meters per second. And we've got about 55. 1It's 55. Very weak.

Huh again we're we see at these 55, we get divergence again above. See it
really looks like we’re getting a little, it's diverging out above cold
air, but it’s weak. &and it gone, oh wow. We get some actually 60 this
time, reflectivity. A lot more reflectivity. And actually we’re ‘showing a
little convergence now. Oh wow it’s up to 60 now. But velocity feature
not very strong, slight. Still 60, no good velocity feature. I'm not wild
about the angle we’re getting now. If there were convergence in that core
we wouldn’t see it well. Now at 55, I’'ll call it now, it’s just only a
touch of 60. Slight indication of that notch is at this level, now. This
is 15 6 [pause] there’s xxxx convergence into that too, hmm. Nice notch
now, reflectivity 55. Can’t see an obvious velocity feature with it
though. Here'’s where we get the convergence. 45, 45 convergence. Okay
we've lost a lot of reflectivity now. And we, now we're actually
divergence. 1It’s slipping down into the about 45, maybe 40, at 30 degrees.
Oh it’s gone only 25 left so we have a real collapsing case here. Boy that

was faster wasn’t it.

E: yeah
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S: I had to move. Just trying to see xxx [silence] The top’s coming

down. Okay now uh descending reflectivity core, yeah it’s still, it’s not
one of the obvious, the most obvious cases in the world, but it’s still
descending, I'll put a 7, confidence is only about 50 percent. Collapsing
storm, it is collapsing but it’s not the most obvious one you ever saw. So
I'1l put 7, confidence at 60 percent. Organized convergence above cloud
base, y~3 it’s still there. 1It’s stili, and it’s actually descended
slightly with time I see. Not much, it’s still, it’s still primarily in
the three to four kilometer zone which is a good zone for it. It’s not
that strong and organized. I put confidence only at 60, meaning I don’t
think it’s all that significant. Organized, there’s still a dive;gence
below cloud base, and I really think that may be significant. Um I’m going
to put, I'm circling the one and two, saying, I'm putting 70 on it cause I
think the outflow is really divergent above the cold air. It may not make
it to the surface very strong. Good reflectivity notch now between 2 and 3

kilometers. I’'ll put a 9 on it, confidence is, well it’s there, 90.

Rotation was um not as good, it was weak. Last time I think I had weak. I

xxx put down a 6. Um confidence is only 50 percent. Okay now if we’re |
going to have a microburst that’s going to occur in this period, I’'m not

very, I think it’s only going to be a very weak outflow though cause the

reasons I've given. Last time I gave 25 percent. 1I'll go with 30 and hope

I'm right.

Subject 2: Case 2

S: [Silence] Okay max reflectivity here is 55. Still got weak

onvergence delta V is 3, ckay. [Pause] 55 again, two point two. Weak 3

a

Q

cnvergence again., Okay. xxx don’'t see it this time. 4 and a half

51




Page 33

degrees, 55. Um still convergent weakly delta V is 3, okay. [Pause] 6.7
xxx 55. [Silence] Um not much gning on that’s really different, okay. 8.8
is 55. 55 [pause] hmm. A suggestion of xxx divergerice on the north edge
of cell, delta V is about 3. It’s still pretty weak, okay. [Silence] 50
DBZ, 11 degrees. Got that wind change xxx, okay. [Pause] 50 DBZ again.
[Silence] Okay. [Silence] Well that’s interesting, huh. 50 DBZ,
??erosion?? echo in the back. Notch is still there. It’s kind of £filling
in though, there’s mid-line with more echo to the west of the cell than
there has been previously. [Silence] Cyclonic, anti-cyclonic couplet
there. Um okay [silence] 50 DBZ, this storm really is tilted in height.
Sort of see convergence xxxx weak xxxxx [silence] okay. [Silence] okay xxx
DBZ [silence] There’s some shear areas but nothing really significant.

This is 22 degrees, um [pause] okay. ([Silence) 45, again we’ve gotten a
couple of shear areas. Cyclonic, anti-cyclonic shear not real couples to
speak of [pause] okay. [Silence] xxx xxxx [pause] cyclonic, anti-cyclonic
shear okay. [Pause] The cell’s falling apart xxx. 35 DBZ. There’s

convergence ??7in the anvil??. [mumbles] 6. ([silence]

S: Uh reflectivities are still maintaining themselves pretty well.
[Silence] Slightly increasing aloft and then decreasing at the very highest
angle. So we don’t have a descending core. And it’s not collapsing.
There’s no real convergence above cloud base, except in the xxxx.

[Silence] Um [silence] there’s not, there’s convergence at or below cloud
base. xxxx xxxx kilometer, there’s that one little spot of divergence ??at
one kilometer?? 1It’s really weak though. [Silence] The notch has become
weaker. Not as well defined. And there’s also xxx flow xxx so I'm going

to rotation, no there’s some cyclonic shear and that’s it. Probability of
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a microburst within the next 5 to 10 minutes, I'm still going to stick with

the 50 percent.

Subject 4: Case 1

S: xxx you leek at that point 5 degree velocity and there’s nothing
there. There is not a microburst outflow. There’s some garbage right
there, but that’s not real. And uh looking all the way up at 2.2 we don’t
really see any divergence or velocity structure. And we’ve got the high
reflectivity xxx so unless we see some dramatic increases in velocity
structure, which we don’t really see here at 4.5, it’s going to be awful
hard to say yes we’re going to get something. And uh even at 6.7 we’re not
seeing any good strong velocity features associated with that core. {Long
Silence] slight hint that there may be convergence coming in here that we
can’t see associated with that notch. And xxx interesting to look at it
from a from a radar out here where we could get a better view. Still
seeing that notch, but again, as I say, it’s not that good of a velocity
structure. I did see some sign of convergence xxx. [Silence] Saw some.
xxx [silence] xxx rotation xxx some convergence not really that good.

[Silence]l xxx looks about the same as it was before [silence] okay.

S: xxx other sheet xxx put down thing xxx for can’t remember for
sure. 7??We do have?? some descent of core. The storm has collapsed
already. I think there’s a slight xxx still kind of collapsing. Uh xxx
not really much happening above cloud base xxx. xxx Part of why you think
collapsing storm. Slight indication of xxx. We got an indication xxx
notch. ;WEll nothing happened last time. Still not seeing it, we’ve got

[ 3

the higﬁ reflectivity down so, not willing to say no chance anymore, but uh
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got to start backing off a little bit on that probability. I’ll be a

little less convinced that something’s going to happen.

Subject 5: Case 2

S: Okay. It takes it forever. ©Ohwe're going to start with point 5.
[Silence] Oh yeah, this quy’s racing off.to the north, and 55 DBZ core.
[pause] And a little convergent shear line still with us way off to the
south. Oh that’s what happened to the cell. It moved off of its
convergent line. Now it’s lost its low level support. 1It’s going to
crash, okay. [Silence] Oh that’s why the core crashed down in such a
hurry. ([Silence] That’s right I did see a sizeable increase in

reflectivity. And that’s what happened to it. Okay.
E: Is that an okay for me?

S: Yeah, that’s an okay okay. [Silence] Oh gosh 60 DBzZ. [Silence]
No velocity features at all associated with the cell at 4.5 degrees.
[Silence] Surprised it hasn’t put out an outflow, okay. Wonder why not?
[Silence] Oh gee, everything’s back down to 55 DBZ now. [Silence] huh.
Still no real velocity features. 1It’s really just a flat field. Okay.
Notch on the side. [Silence] huh let’s see, not much at all going on.
Strange, we’re up at 8.8 degrees and I don’t see much of anything, huh.
Okay, go to the next one, if you haven’t already. [Silence] 50 to 55, well
a little bit of cyclonic shear. Certainly a notch. Okay. [Silence] Oh
another cyclonic shear right in the middle of the cell. [Silence] Oh yeah,
a little bit of convergence right there, okay. (Silence] Oh hurry up
{silenct] yep, a little bit of convergence now in the middle of the cell.

[silence] Okay. [Silence] Oh rotation hanging off, way off on the end out
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in the area of no, not much signal. Uh now we’re seeing convergence
peppered about here, hither in the thither. Rotation down in the south end
where we’ve always seen it. xxx okay. [Silence] Oh there’'s a clear
rotation near that notch, cyclonic rotation. Okay. [Silence] huh a little
bit of divergence right up here. 25.8 degrees, cyclonic shear to the
south, probably strong rotation. Huh. [Silence] Is it doing anything?
[referring to computer] [Silence] Oh yéah now I see convergence on the
western end, right where that notch, okay. ([Silence] Oh there’s
convergence all over the place, 34.8. Uh max reflectivities xxx 40 to 45.

Okay.
E: That’s it on that one.

S: Okay. Descending reflectivity core, it’s obvious. Collapsing
storm, probably is, but not real sure yet. Organized convergence or
divergence above cloud base, you betcha. Not much convergence at or below
cloud base, I didn’t seen anything. And I'm pretty sure I didn’t see
anything. There's a reflectivity notch. There’s rotation. I’'m a little
concerned that I didn’t see any divergence at the surface, ‘but what the

heck. 90 percent, or is this [silence]

il
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Table 1

Agreement Correlation Coefficients
from Best Case Scenario Study
(Probability of a Microburst)

A B C
B .78
C Wk 712
D 52 .49 64

T (across all forecasters) = .67

99

60




Table. 2

Agreement Correlation Coefficients
(Probability of a Microburst)

A B C
B .60
C .88 45
D 31 .15 19

T (across all forecasis) = .49

M,
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Table 4

Mean Precursor Agreement

Precursor P
Descending Core .09
Collapsing Storm .47
Convergence Above 3
Convergence Below .59
Notch 44

Rotation 22
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Table

S

Mean Correlation Coefficients Over Time

Time 1
Descending Core .095
Collapsing Storm .290

Convergence Above .435

Convergence ‘Below 515
Notch .690
Rotation -.055
Probability .405

il
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.185

.360

.680

.745

.580

.335

.540

175
810
745
855
830
495

.600




Table 6

Mean Probability Judgments* Over Time

Forecaster Time 1 Time 2 Time 3
A .22 22 123
B sslv .13 22
C .16 .18 .26
D .31 .28 .36

ALL .20 .20 .26

*These data were converted to absolute values of deviations from .5.

¥
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Table 7

Mean Confidence in Cue Judgments

Means for each Forecaster Across Cues

Forecaster Time 1 Time 2 Time 3
A .49 .63 .57
B .95 .93 .95
C 46 51 158
D .89 .93 .96

Means for each Cue Across Forecasters

Timel Time 2 Time 3
Descending Core .63 .14 £
Collapsing Storm .66 .73 5
Convergence Above .72 ) .15
Convergence Below .73 .79 T
Notch 73 .75 .79
Rotation 71 .12 .76

66




Mean of Precursor Ratings by Forecaster

Precursor

Descending Core
Collapsing Storm
Convergence Above
Convergence Below
Notch

Rotation

Table 8

>

.46
.58
.60
.63
.62
49

67
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.99
295
91
.86
.97
.96

(@!

ol
.48
.49
.59
47
.56

o

.86
.89
97
A7
.96
.92




Table 9

Mean Confidence in Probability Judgments

Over Time
Forecaster Time 1 Time 2 Time 3
A .40 .50 55
B .88 .90 .93
C .48 .49 .65
D .84 .80 .86
ALL .65 .67 .74

il




uolloipaid
1SINQOIDIN

cfoffefoReNeReRRe

s10s1n2dlid Bleq Jo eled JETI-ETYY uoliejouan
/sena aAnoalgng  uondsolsd jepey 1SINQOJOIN/WI01S
S,191SB08104 aAnoslqo Jo swsiueyoa
3 a a g v

Sui)sedalo, 1SINQOIdIJN Ul saseyq Jo ddouanbag

1 QansIy

69




DESCENDING
REFLECTIVITY
CORE

COLLAPSING
STORM

ORGANIZED

CONVERGENCE
ABOVE CLOUD
BASE

(X 10°3 s'1)

ORGANIZED
CONVERGENCE
(DIVERGENCE)
NEAR CLOUD
BASE

x103s 1

REFLECTIVITY
NOTCH

ROTATION

“Figure 2

Example of a Microburst Profile
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Abstract

Two studies of microburst forecasting were conducted in order to
demonstrate the utility of applying theoretical and methodological concepts
from judgment and decision making to meteorology. A hierarchical model of
the judgment process is outlined in which a precursor identification phase
is separated from the prediction phase. In the first study, forecasters
were provided with specific, perfectly reliable precursor values and were
asked to provide judgments regarding the probability of a microburst.
Results indicated that the microburst forecasts were adequately represented
by a Tinear model. Modest agreement was observed among the forecasters'
judgments. In the second study forecasters viewed storms under dynamic
conditions representative of their usual operational setting. They made
judgments regarding precursor values, as well as of the probability of a
microburst occurring. The forecasters' agreement regarding microburst
predictions was found to be even Tower than in the first study. In
addition, agreement regarding the (subjectively) most important precursor
value was near zero. These results suggest that opportunities to improve
forecasting would result from a better understanding of the precursor

identification and prediction phases of the forecasting process.

"
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1. Introduction

From the point of view of research and operational meteorologists, the
forecasting of any weather phenomenon first requires an understanding of
the reélevant physical processes which generate a particular weather event
(Doswell 1986; Smith et al. 1986). It is generally assumed that the
forecaster develops a conceptual model of the phenomenon from an
understanding of the physical processes. This conceptual model is then
often applied to an operational setting (see, e.g. Mueller et al. 1989;

Roberts and Hjelmfeldt 1989).

When involved in the forecast process the operational meteorologist
observes, evaluates, and thinks about a stream of weather information,
which is continually changing with time. Thus, there are a number of
activities which directly involve the cognitive processes of the
meteorologist. The data from numerous information sources must be
perceived and assimilated by the forecaster. These data must be integrated
and their significance for a particular weather event must be assessed.

The forecast must then be made, often within strict time limits and with

limited information.

Inaccuracies in weather forecasts result because of errors,
inconsistencies, or lack of understanding in all of the above (Doswell
1986; Smith et al. 1986). Considerable effort in the past has been placed
on improving the basic understanding of the physical processes and the
development of conceptual models underlying a particular weather event as

well as ontproviding improved weather information and displays. Yet no
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research effort has been directed at a better understanding of the
cognitive or judgment processes involved. (Although meteorologists do, in
fact, recognize the role of human forecasting processes; see, e.g. Doswell
1986; Smith et al. 1986. See Stewart et al. 1989, for an exception.) It is
the latter problem to which the present efforts are directed. In
particular, the goal of this paper is twofold: 1) to introduce theoretical
and methodological concepts from the judgment and decision field, and 2) to
apply those concepts to a specific forecasting problem. The research was
conducted in the context of severe weather forecasting and in particular
was concerned with the forecasting of microbursts--brief, localized wind

storms that are a potentially fatal hazard to aircraft.

In the studies reported here, we have investigated cognitive activity
at particular stages of a schema that represents both the physical
environment of a storm and the perceptual and cognitive activities of the
forecaster. The hierarchical model that depicts steps between the
environment of a storm and a judgment about microbursts is presented in
Figure 1. This framework is derived from social judgment theory (Hammond
et al. 1975; Brehmer and Joyce 1988), which describes the relationship
between two systems: the task system in the environment and the cognitive
system of the decisinn maker. The ervironment of the microburst
forecasting task is represented as Phases A, B, and C in Figure 1. Phase A
represents the physical mechanisms that underlie the weather phenomenon at
Phase B. The weather produces objective data from Doppler radar at Phase
C. The cognitive system of the forecaster begins operating at Phase D.

After reading the radar data {a perceptual task) at Phase D, the forecaster
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must extract the cues that are hypothesized precursors of microbursts at
Phase E and integrate them into a judgment about the occurrence of a
microburst at Phase F. The decomposition of the final microburst judgment
incorporates and separates perceptha] and conceptual cognitive activities.
Perceptual activities are represented at Phase D. Forecasters® conceptual
understanding of how those data combine to indicate precursors and how the
precursors combine to arrive at a microburst prediction are represented in

Phases E and F.

The hierarchical nafure of the model implies that error at any phase
can be passed on to later rhases. Therefore, the quality of the final
judgment depends on perceptions and judgments at each prior phase. Errors
are not only 1likely to be cumulative but are apt to have nonlinear
consequences as well. Anthes' (1986) argument that "any error, no matter
how small, will eventually grow and contaminate even a perfect model's
forecast" (p. 627), should, of course, be applied to forecasters'
perceptions and judgments as well as physical instruments (see Tribbia and

Anthes 1987).

Two studies were conducted investigating the different phases of the
microburst prediction task. In Study 1, judgment analysis was used to
investigate microburst prediction at Phase F. Following the procedures of
social judgment theory, we first identified the cues (precursors) that
forecasters use to identify microbursts. We then generated a sample of

x

cases representing hypothetical storms. For each case, forecasters judged
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the probability of a microburst. From analyses of those judgments we
determined how the forecasters integrated the cues into a judgment. In
addition, we assessed intra- and inter-forecaster consistency in judgments,

and individual differences in forecasters' integration of the cues.

In Study 2 we investigated the microburst prediction task in a setting
representative ¢¢ ine real-time situation in which forecasters normally
operate. Forecasters observed Doppler radar scans of storms over time
(some of which produced microbursts and some of which did not) and made
judgments regarding precursor values and the probability of a microburst.
This study assessed the overall degree of agreement among the forecasters
in Phases D, £, and F of Figure 1 in order to determine at whicii phase in
the judgment process disagreement may be occurring. In addition, the

effects of updated information over time on agreement was assessed.

Each study is described in turn below. At the end of each study a
brief summary of the results and implications are presented. Following the
second study is a general summary and discussion of the results and their

implications.
2. Study 1: Judgment analysis of microburst nowcasts

We began our research program by investigating the conceptual models
forecasters used to make microburst nowcasts when provided with precursor
data. This allowed us to determine the degree to which forecasters'
judgments agree when they are provided with the same data, and the degree
to which disagreement was due to a different conceptual model, and/or due

z

to inconsistency in the application of conc' ptual model. Finally, the
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Tinear model from our judgment analysis was compared to a model provided by

the forecasters during a discussion.

The method and analyses reported follow the procedures of social
judgment theory (Hammond et al. 1975; Stewart 1988). Another example of
applications of these procedures to meteorology may be found in Stewart et

al. (1989).

a. Procedure

—

1) PROBLEM STRUCTURING

Problem structuring, which includes defining the judgment of interest,
describing the forecast scenario, identifying the most important cues,
defining the cue ranges, and describing relations among the cues, was the
focus of an initial meeting with the forecasters. A proposed structure,
based on Roberts and Wilson (1987) and on previous discussions with one of
the forecasters, was presented. The three forecasters present discussed
the proposed structure and suggested a few changes to the scenario and an
extension of the range of one cue. They agreed on the problem structure

described below.

The judgment. The judgment of interest was defined as the probability

(0-100%) that a microburst will be produced by the storm under observation

within 5-10 minutes.

o
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The scenario. The judgment scenario describes the conditions leading

up to the forecast. It was constructed by fixing the values of certain
variables that are expected to influence forecasting strategy. (The effect
of the scenario variables on the forecasting strategy is an empirical
guestion that can be addressed by varying scenarios.) The present scenario

was described as follows:
1)  The morning soundiny was favorable for microbursts.
2) There has been a pattern of moderate storms in the vicinity.

3) Microbursts have been observed with other storms earlier in the

day.
4) The temperature is still near the convective temperature.

5) The event under observation is a mature storm that is isolated,

but possibly multicellular.
6) The level of reflectivity of the event is moderate.

The cues (precursors). The cues included in the storm cases were: 1)

descending reflectivity core, 2) collapsing storm top, 3) organized
convergence above cloud base, 4) organized convergence/divergence near

cloud base, 5) reflectivity notch, and 6) rotation.

The ranges for these cues are presented in Figure 2, an example of a
case that the forecasters judged. Abstract scales were used for cues 1, 2,
5, and 6 because physical measures for these features were not available at
the time tﬁis study was conducted (see Roberts and Wilson 1989, for a

discussion of these radar features).

80
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Relations among the cues. The forecasters agreed that no combination

of values was physically impossible but that collapsing storms without
desc. nding cores were uninteresting when microbursts are being forecast.
They also said that divergence near the cloud base would be possible but

rare.

Generation of hypothetical cases. Because real microburst cases were

not available in sufficient numbers at the time this study was conduéted,
hypothetical microburst cases were generated. Each case consisted of a
different mix of values for the six cues. The properties of the cases

conformed to the problem structure previously described.

The POLICY-PC program (Executive Decision Services 1986) was used to
generate hypothetical cases. This program generates random-integer cue
values with specified ranges. Of 50 cases initially <enerated, eight were
eliminated because they indicated collapsing storms withcut descending
cores (i.e., the value of collapsing storm was more than 3 points higher

than the value for descending core).

Eight of the original 50 cases had values of +2 or +1 for the cue
convergence near cloud base. These positive values indicate divergence
rather than convergence. Because the forecasters had indicated that this
would rarely occur, half these cases were selected at random and dropped.

Twelve new cases were generated randomly to bring the number of cases back

=
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to 50. The resulting intercorrelations among the cues were low; the

highest was between collapsing storm and descending core (.31).

The same procedure was used to generate 25 new cases for the second

session.
2) COLLECTION OF JUDGMENTS

zach of five forecasters from the National Center for Atmospheric
Research (NCAR) in Boulder, Colorado judged 50 cases in individual sessions
lasting from 20 to 45 minutes. Approximately one week later the same
forecasters judged another set of 50 cases. The second set of 50 consisted
of 25 new cases followed by 25 repeated cases from the first session. The
25 new cases were included for cross-validation, that is, so that the model
derived from the first session could be tested on a new sample of cases.
The 25 repeated cases were the even-numpered cases from the first session
presented in a random order. These cases were included to assess the

reliability of the forecasters' judgments.

Two forecasters from Lincoln Laboratories (MIT) judged the same cases,
but the interval between Session I and Session II for them was a few

minutes instead of a week.
b. Results

—

1) AGREEMENT

Correlations among the seven forecasters' judgments are presented in

Table 1. They range from .45 to .90, indicating moderate agreement among

82
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forecasters. The correlations indicate that Forecaster E differs from the

other forecasters.

2) CONSISTENCY

Consistency1 indicates the extent to which a forecaster makes similar
Judgments when the same information is presented on different occasions.
It was measured by ccrrelating the pairs of judgments made on the 25

repeated cases. The consistencies are reported in the last row of Table 1.

The consistencies are moderate to high. Forecaster £ has the lowest
consistency, which explains in part why his forecasts do not agree with
those of the other forecasters. The two forecasters from Lincoln
Laboratories (F & G) have the highest consistencies, probably because of a

memory effect; their judgments were repeated within a few minutes.
3) JUDGMENT ANALYSIS: REGRESSION MODELS OF JUDGMENTS

Judyment analysis is based on a pervasive finding in research on

judgment and decision making: In a variety of fields of expertise, simple
algebraic models can reproduce the judgments of experts (Stovic and
Lichtenstein 1973; Hammond et al. 1987; Dawes et al. 1989; Brehmer and
Joyce 1988). O0ften a simple linear model predicts the judgments of experts
as well as or better than more complex models (Dawes and Corrigan 1974).
Judgment analysis (Hammond et al. 1975; Stewart 1988) uses multiple

regressionanalysis to model the judgients of experts.
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Models of the following form were statistically fit to the forecasts

made by each forecaster:

di 3 dril o Jeriz o 3i3 o javia o 3sis o jeTie ¢ Tij
where

Yij the forecast made by forecaster j based on case i,

c;_ a constant for forecaster Js

ng the weight for cue Kk,

X;; the value of cue k on case i, and

e;; the residual for forecaster j on case 1.

The parameters (cj and the bij) of the model were determined so that
the sum of the squared differences between the predictions of the model and
the actual forecasts were a minimum; that is, for forecaster J, the sum of

the (eij)2 over all the cases is minimized.

The correspondence between the statistical model and the actual
forecasts is given by the multiple correlation (5) which can range from O
to 1, with 1 indicating perfect fit. The squared multiple correlation (B?)

indicates the proportion of variance in the forecasts that is accounted for

by the model.

Table 2 shows that the regression models account for 68 to 91% of the
variance in the forecasts. In other words, these simple linear models can
reproduce the forecasts with a fairly high degree of accuracy and account

for most of the consistent variation in forecasts.

o
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4) RELATIVE WEIGHTS

Relative weights derived from the regression models of each forecaster
are presented in Figure 3. These weights, which are based on the
standardized regression weights (beta weights) adjusted to sum to 100,
indicate the relative importance of each cue to each forecaster. (See the

Appendix for details on the derivation of these weights). Six of seven

forecasters placed the greatest weight on descending core. The weights for
Forecaster E differ substantially from the others. This forecaster placed
Tittle weight on the cue descending core and had the largest weight for the
cue notch. This pattern of weights explains the differences, apparent in

Table 1, between Forecaster E and the other forecasters.

5) AGREEMENT BETWEEN COMPONENTS OF JUDGMENTS

The regression model of each forecaster can be used to decompose each
forecast into two parts: the linear component, which is the part that is
captured by the Tinear model, and the nonlinear component, the part that is
not. Correlations between each of these components of judgment across
forecasters are presented in Table 3. The correlations among the linear
components of the forecasts (labeled G by Hursch et al. 1964) are very
high, but the correlations between the nonlinear components of the

forecasts (1abeled C by Tucker 1964) are quite low.
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The G coefficients in Table 3 measure the agreement that forecasters
would achieve if they applied the relative weights described in Figure 3
with perfect consistency. The differences between the values of G and the
agreement correlations reported in Table 1 indicate the amount of

disagreement due to lack of fit of the linear model to the forecasts.

The C coefficients measure agreement in the nonlinear part of the
forecasts. The low values of C indicate that if forecasters are usiﬁg
nonlinear processes to organize the cues into a microburst forecast, the
results of those processes differ across forecasters. Until further
research is conducted, plausible interpretation of the low C coefficients
is that most of the nonlinear component of the forecasts is unreliable, or

"error," variance.

6) A NONLINEAR MODEL

When the results of this study were presented to the NCAR forecasters,
they insisted that tne linear model was not an adequate representation of
the way they forecast microbursts. The most important nonlinearity that
the forecasters described involved the use of cutoffs on descending core
and collapsing storm. They indicated, both in discussion and in writing,
that they used a two-stage process in forecasting. If desr.ending core and
collapsing storm were low, then the probability of a microburst would be

low, regardless of the other cues. On the other hand, high values of
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descending core and collapsing storm would indicate a downdraft, and the
forecasters would Took at the other cues to determine the strength of the

downdraft.

To test the ability of this nonadditive model to explain the

forecasters' judgments, the sample of 75 cases was divided into nine

subgroups:
Collapsing Storm
Not Questionable Obvious
(1-3) (4-7) (8-10)
Descending
Core 7 A ; B 1 C K
Not i LOW i LOW : LOW |
(1-3) E PROBABILITY! PROBABILITY]| PROBABILITY|
[} | [}
jmenmeTesmE=- | —— | Dbt [}
) i E { F i
Questionable | LOW ' H ]
(4-7) i PROBABILITYE E E
e e e e e ] T — — == RS S e Sterre s el |
G ) H ! |
Obvious } l l |
(8-10) | | | l
i I i |

(This table was developed by the forecasters.)

Next, for each forecaster, the mean judgment for all cases falling in
Cells A, B, C, or D (a total of 18 cases) was calculated. The cell mean
was considered the predicted judgment for every case falling in that cell.
Then a linear regression equation for the remaining cases, those falling in
Cells E, F, G, H, or I was computed. For each forecaster the predicted
scores from linear regression were combined with the means to create a
variable that includes predicted scores for all 75 cases. The predicted

judgments based on this model were correlated with the actual judgments.

N
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A comparison of the correlations between this nonlinear model and the
multiple correlations presented in Table 2 showed that the Tinear model was
superior for six of the seven forecasters. For Forecaster F, the nonlinear
model and the linear model were equally accurate. Thus, the simple linear
model reproduced the forecasters' judgments better than did the nonlinear

process that they suggested.
7) SUMMARY

The results of Study 1 show that, when the cues used in forecasting
microbursts are specified for the forecasters (rather than perceived),
agreement among forecasters was moderate. Further, the forecasting process
is adequately described by a simple linear model. Weights derived from
that model clarify the relative importance of the cues which, in turn,
explain similarities and differences among forecasters. Finally, the
simple linear model reproduced the forecasters' judgments as well as or

better than did a more complicated linear mndel that they suggested.

3. Study 2: Judgments of precursors and microbursts in a displaced

real-time setting

Study 1 demonstrated a moderate deyree of agreement among microburst
forecasters and that a linear combination of precursor values will
represent microburst forecasts (Phase F of the hierarchical judgment
model). Our next step was to investigate judgments regarding the precursor
values (Phase E) that are combined to yield the final forecast. In doing
so we designed a dynamic situation that wes representative of that in which

the forecasters typically operate.
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a. Procedure

The subjects in this experiment were four of the five NCAR microburst

forecasters who participated in Study 1.

The experiment was conducted in two phases. In Phase 1 the

forecasters each viewed cne microburst and one null case. The procedures

were then revised (as described below) in order to increase the amount of

data that could be collected in a shorter period of time.
1) OVERVIEW

During each experimental session the forecaster was seated in front of
a large computer terminal used to present color Doppler radar displays.
The experimenter was seated in front of another computer terminal that was
used to run the experimental session. At the first session of each phase
of the experiment, the forecasters were presented with instructions
regarding how the experiment would proceed. The forecasters were presented
with a volume of radar data, after which they made judgments of precursor
values and the probability of a microburst. The presentation of data and

making of judgments were repeated until completion of each case.

2) THE CASES

Six cases were used to generate the data in this study: two in the
first phase and four in the second phase. Half of the cases in each phase

were null cases and half were microburst cases.
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Each case consisted of a set of radar volume scans (or volumes) of
reflectivity and Dopplier velocity data, presented chronologically. The
volumes each comprised two and one-half minutes of real time data. Each
consisted of 13 scans, starting with either the .5 or 1.1 degree elevation
scan and terminating with either the 34.8 or the 39.9 degree scan. In the
first phase, Case 1 included six volumes. The data for Case 2 spanned
eight volumes. However, one volume was skipped due to faulty data. 1In
addition, one volume in Case 2 only included the lower seven scans.
However, judgments were still collected for that short volume. 1In the
second phase all cases included four volumes of data. Each case terminated
before the microburst was evident on the lowest scan or before any obvious
or substantial decrease in the intensity or height of the cell in the null

cases.
3) THE JUDGMENTS

The forecasters were asked to make judgments of the six precursor
values they had indicated to be the cues in Study 1: descending core,
collapsing storm, convergence above cloud base, convergence/divergence at
or below cloud base, notch, and rotation. In addition, forecasters made
Jjudgments of the probability of a microburst occurring in the next 5 to 10

minutes.

The judgments regarding precursor values and probability of a
microburst were made on the same scales as in Study 1. In addition, to the
right of each rating scale was a blank for the forecasters to insert their

confidencezin their precursor judgments. In Phase 1, forecasters'

S0
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instructions regarding confidence judgments included the following: "Your
confidence may be expressed as the probability you believe that your
precursor judgment is correct. A zero probability would indicate that you
are certain you are not correct and a probability of 100% would indicate
you are certain you are serrect. A confidence value of 50% indicates your
precursor judgment is as likely to be incorrect as correct." In the second
phase, the instructions stated: "We would like to clarify what those
confidence judgments mean. Your confidence may be expressed on a scale
from zero to 100. A zero rating would mean that you have no confidence at
all in your judgment, a rating of 100 would mean that you are compiefe]y
confident, and a rating of 50 would mean that you are half-way in between.
A rating of 75 (or 25) would of course indicate greater (or lesser)

confidence than the midpoint of 50." The rating sheet is shown in Figure 4.

In the first phase, judgments were made after each volume. Therefore,
judgments were made six times for Case 1 and seven times for Case 2. In
the second phase judgments were made after all but the first volume. Thus,

three judgments were made for each of the four cases in the second phase.

4) THE EXPERIMENTAL SESSINN

At the beginning of the first session in each phase, the forecaster:
were provided with written instructions which explained that each case
would consist of several volume scans, over time, of a cell that did or did

not producéd a microbursi, starting with the lowesi scan at the earliest
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time. When they finished observing each scan, the forecasters were
instructed to tell the experimenter that they were ready for the next level
scan. The forecasters were given up to thirty seconds to view each scan.
After completion of a volume in this manner, the forecésters filled in the

rating sheet. In addition, the instructions stated, in part:

At the time of the first volume you can assume that a
microburst is not presently occurring. Please assume before
observing the first scan, that on the bazis of prior information
(morning soundings, etc.) you have already reached the conclusion
that the likelinood of a microburst on this day is .50. Then
adjust your probabilities of a microburst after observing the
radar data. Each case will terminate prior to evidence of
outflow from a microburst or evidence that the storm is obviously

dissipating.

Finally, the forecasters were given instructions to think aloud and their

verbalizations were recorded.

The instructions for the second phase explained the changes in the
experimental procedure. The forecasters were informed that they would
receive the noon sounding data, view cnly four volumes of data, and make
judgments as in the first phase after the second through fourth volumes.
In addition, the instructions explained that the scans within each volume

would be presented continuously and that they did not need to think aloud.

XLl
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The forecasters were provided with biank paper for taking notes and
felt tip pens to mark the screen. The date for each case was masked on the
computer screen. At the beginning of each case, the forecasters were told
the coordinates where the cell they were to attend to was presently

located.

In the first phase, half of the forecasters were presented with Case 1
first, and half were presented with Case 2 first. In the second phase, the
cases were arranged on a tape in a fixed order. Each forecaster began with

a different case, but otherwise the order of presentation was fixed.
b. Results
1) OVERALL AGREEMENT AMONG FORECASTERS

Analyses were conducted to determine the degree of agreement between
forecasters' judgments of precursor values and agreement between
forecasters' judgments of the probability of a microburst. The data used
in these analyses were the judgments made after each volume. Thus, 25 data
points are possible for each subject (some analyses have a slightly lower
number of data points in instances where forecasters did not provide
ratings). The correlations between the judgments of each pair of
forecasters were computed for each precursor and are presented in Table 4.
Similarly, the correlations between judgments of the probability of a

microburst were computed and are presented in Table 5.

il
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Tables 4 and 5 clearly indicate a lack of agreement between
forecasters regerding both the precursor and probability judgments.
Although many of the correlations are substantially larger than zero (and
are, in fact, statistically significant), they are all substantially

smaller than 1.0 or any other level of acceptable agreement.

Comparison of the level of agreement for the different precursors 1in
Table 4 indicates a higher degree of agreement on some precursors than on
others. Particularly noteworthy are the low and even negative (!)
correlations for judgments of descending core. This result is particularly
important because this precursor is the one which forecasters weighted most
heavily in arriving at microburst probability judgments (as indicated in

Study 1).

Agreement regarding precursor values was highest for the two
convergence precursors, second highest for collapsing storm and notch, and
Towest for rotation and descending core. The different levels of agreement
between precursors are probably due to the different levels of abstraction
or stages necessary to make judgments of the precursor values. For
example, the two convergence precursors are probably the precursor values
most directly obtained (from the radar velocities). In contrast, the
descending core judgment requires that the forecaster combine information

about maximum reflectivity values over times and heights.

The above results regarding agreement concern judgments at Phase E in
our hierarchical model. Given the considerable disagreement regarding

precursor ¥alues, it is important to determine the extent of agreement
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regarding perceptioﬁ of the data one step previous in the judgment process
at Phase D in order to ascertain whether such disagreement is cumulative
upward in the judgment hkierarchy. The velocity (in meters per second) and
reflectivity (in dBZ's) data from the Doppler radar are both presented as
colored images. Three of the four forecasters took extensive notes
regarding the dBZ values and these notes were utilized to assess the
agreement regarding forecasters' translation from colors to numerical data.
The number of times each pair of forecasters agreed and disagreed on the
dBz values in their notes was counted (agreement was defined as values
within 5 dBZ's of each other). An agreement score for each pair of‘
forecasters was calculated by dividing the number of agreements by the sum
of the agreements and disagreements. For Forecasters A and B this score
was 96%, 93% for Forecasters A and E, and 99% for B and E. This result
indicates that 1) forecasters are in agreement regarding the raw
reflectivity values and 2) disagreement occurs when combining these values

into precursor judgments.
2) AGREEMENT OVER TIME

Did agreement increase ~ver time? The answer to this question is
important because it indicates whether increasing information over time
does or does not lead to converging judgments. For each precursor and the
microburst probability judgments the correlations were computed between
each pair of forecasters for each of the last three volumes separately.
The initial data for these analyses were judgments for each of the last
three judgment times (volumes) in each case. Specifically, "Time 1"

included jﬁdgments from volume 4 for Case 1, volume 6 for Case 2 and volume
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2 for the other four cases. Likewise "Time 2" included judgments from
volume 5 for Case 1, volume 7 for Case 2 and volume 3 for the other cases.
Finally, "Time 3" included data from the last volume of each case. This
resulted in three correlation matrices for three times. Each ccrrelation
was then converted to a Fisher's z Zand the mean z of each correlation
matrix was computed and then converted back to a value for r. These mean r

values are presented in Table 6.

As can be seen from Table 6, the degree of increased agreement over
time varies by precursor. Agreement clearly increases for the precursors
collapsing storm, rotation, and the two convergence precursors. But for
descending core (the most highly weighted precursor), notch, and the
probability of a microburst it is less clear that agreement increases over

time.
3) CONFIDENCE IN JUDGMENTS

The mean confidence ratings across all six cases are presented in
Table 7 separately for each precursor and probability judgment. (Note that
the confidence ratings for the probability judgments were collected only
for the last four cases.) It is clear from Table 7 that forecasters were
generally at least 50% confident in their judgments, indicating at least
some degree of confidence in their ratings. In fact, Forecasters B and E
were very confident in their judgments. The importance of these findings

and particulariy the change in confidence over time are discussed elsewhere &
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(Lusk and Hammond 1989). In the present context, the must important point

is that although the forecasters were making markedly different forecasts,

each expressed rather high confidence in the accuracy of their forecasts.

C. Summary

Although the conclusions drawn from this study are based on only six
cases (25 data points) and must therefore be treated with caution, it is
clear that there was a pervasive lack of agreement among the forecasfers'
judgments of precursor values. It is important to note that the level of
measurement at any level in the judgment process (see Figure 1) sets the
upper level for accuracy at the final stage of microburst prediction, as is
the case for any measuring instrument human or otherwise; (see, e.g.
Tribbia and Anthes 1987). Equally important is that these results
apparently came as a surprise to the forecasters themselves. Some of the
forecasters were clearly very confident in their judgments. -However, there
is no evidence to suggest that the forecasters had ever made any attempt to
ascertain whether their judgments coincided. Indeed, there is no

indication that such studies of forecasters' agreement have ever been

carried out within the meteorological profession. In short, either false
assumptions about inter-forecaster agreement are pervasive in meteorology,
or meteorologists are simply indifferent to the significance of

inter-forecaster disagreement.

I
o
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4. General discussion

Our goal in this research was to study cognitive processes underlying
microburst forecasting and to discover how research in judgment and
decision making could help forecasters provide better forecasts. Thus, we
devised a conceptual framework (see Figure 1) of the phases involved in
arriving at a judgment of the probability that a storm will produce a
microburst. The forecasters' perception of the radar data (Phase D),
extraction of the cues (Phase E), and judgment of a microburst (Phase F)
were studied. Study 1 provided a "best case scenario” for the forecasters.
That is, if it is true that the best available precursors of microbursts
are those identified by the forecasters and used in the study, then the
forecasters were making judgments on the basis of error-free information
because the forecasters did not have to determine the cue values
perceptually. From Study 1 we learned that a simple Tinear model is a good
descriptor of forecasters' judgments. In addition, the results of Study 1
indicated that when provided with a best case scenario the forecasters
disagreed with one another regarding their microburst judgments and

demonstrated inconsistency in their own judgments.

Study 2 indicated an even greater degree of disagreement regarding
microburst judgments than did Study 1. This is contrary to what many
people outside the judgment and decision making field might expect (but
consistent with what those inside the field would expect), especially those
who assert that profile cases (as used in Study 1, see Figure 2) "rob"
subjects of’information they typicaily use when making judgments. Study 2

was designed in a manner to be representative of the real time situation in
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which the forecasters normally operate. But their performance was worse

than with the profile cazes {Study 1). Fortunately, the design of the
research (specifically the coliection of cue judgments) made available the
data appropriate for determining the basis of the disagreement. Utilizing
the hierarchical model, the degree of disagreement was traced back through
successive nodes in the judgment hierarchy. Cecnsiderable disagreement was
found regarding precursor judgments at Phase E, with the amount of

disagreement varying by precursor. Woving back one phase further in the

judgment process to Phase D considerable agreement was found regarding
forecasters' perceptions of reflectivity values. For example, when fhe

objective radar data (Phase C) is perceived by the forecasters (Phase D),

they perceive the same reflectivity values. However, when those values are

integrated over time and height to generate a judgment of descending core,

considerable disagreement appeared.

After reviewing these clearly undesirable results, we recommended that
the forecasters increase agreement by constructing clear operational
definitions of each precursor, a step apparently not taken earlier. The
procedure for producing definitions should include first, scientific
knowledge of physical mechanisms, and second, a framework outlining the
phases from those mechanisms to the judgment of a precursor value similer
to the one we have been utilizing. That is, once an explicit, public
theoretical definition of the physical processes has been agreed upon, a
model should then be developed that describes how the physical mechanisms
are manitested on the radar displays, and how those mechanisms, once

perceived By a forecaster, can provide data for ~ach microburst precursor.
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Then at each phase of the model, empirical tes’; of agreement should be
employed (as in our research). Finally, a formal training program could be
established which utilizes the model developed during the definition
process in training exercises that track performance and provide feedback.
The "replay" capacity of the modern workstation brings these steps within

practical means.

In addition to training exercises, a formal research program should be
established to study the cognitive processes underiying meteorological
judgments. Although meteorologists recognize the importance of the process
by which forecasts are generated, they have not made use o¢f, indeed, show
no evidence of being aware of, the roughly forty years of research on
Jjudgment and decision making. For example, Doswell (1986) offers a model
of the human forecasting process, and in doing so makes many assertions
about that process. Yet he offers no empirical support for them (except
for one reference to Allen's 1981 pioneering work). Researchers in the
field of cognitive science would find these assertions to be as amateur as
a layperson's weather forecasts. On the other hand, Smith et al. (1986)
acknowledge the role of "a growing science based on decision theory (that)
seems likely to help forecasters arrive at more objective decisions" (p.
43), but fails to direct the reader to the li{erature where research on
“"decision theory" might be found (e.g., Arkes and Hammond 1588; Baron 1988;

Hogarth 1980; Kahneman et al. 1982).

o Y
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The purpose of this research process was twofold: First, it was
intended to assist cognitive psychologists to increase their understanding
of judgment and decision naking processes in dynamic (i.e., changing) task
conditions, and second, to assist heteoro]ogists to increase their
understanding of the cognitive aspects of meteorological judgments with the
aim of improving those judgments. It is our view that these goals were
achieved to a limited but not trivial extent. Results pertinent to
psychological research on dynamic tasks are discussed elsewhere (Lusk and
Hammond 1989), but it is clear that specific information that would not
have been otherwise obtained was brought to bear on a specific forecésting
problem. These results pointed directly to steps that could be taken to
improve the process. Perhaps the most significant contribution of this
research to meteorology is the demonstration of the utility of applyiny
theoretical and methodological concepts of judgment and decision making to

the forecasting process.

L]
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APPENDIX

The raw regression coefficients and their standard errors for each

forecaster are presented in Table A. In their raw form, it is difficult to

directly compare the regression coefficients to ascertain different
weightings of cues because the values of the coefficients are in the
original scale units and the cues were measured on different scales.
Therefore we transformed the regression coefficients into relative weights
so that comparisons can be made between cues and between forecasters.
Computation of the relative weights proceeded as follows. First the
standardized regression coefficients (the beta weights) were computed. The
standardized form of the regression equation compensates for differences in
units by transforming each variable so that its mean is 0.0 and its
variance is 1.0 in the sample. Then we computed relative weights. For
each forecaster, the beta weights were summed and each beta weight was
divided by that sum. Finally, each relative weight was multiplied by 100,
which makes the interpretation of the relative weights much clearer than

either the raw or beta weights.

o
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Footnotes

1 The term "consistency"” in this paper refers to what psychologists

mean by "reliability". Consistency is used here to avoid confusion of

reliability with the term "calibration".

2 When correlations are used as depéndent variables it is recommended
(Cohen & Cohen, 1983; Judd & McClelland, 1988) that they first be

transformed to Fisher's z.
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Table 1

Study 1: Agreement and Consistency
Correlation Coefficients

A B C D E F G
B .78
C .82 81
D 75 72 76
E = .49 45 64
F 80 90 .84 75 45
G .85 .80 .81 1 45 .81

Consistency .81 .92 .19 .89 .76 95 .98
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Table 2

Study 1: Multiple Correlations

.89
I2
.89
.86
.83
95

.88
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.96

.93
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Table 3

Study 1:

B

.96
.87
.59
.98

.93

Study 1:

Agreement

C D E

I,

.64 .85

.94 .85 .53

97 .93 .69
Agreement

.94

Nonlinear or Nonadditive Component (C)

A

.09

.27

k)

.02

12

.19

19

.38

.23

-.09

.29
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D E
.14

gl .21
.04 -.18

18

-




Table 4

Study 2: Agreement Correlation Coefficients for
Judgments of Precursors

Descending Core . Collapsing Storm
A B D A B D
.14 B .69
-.06 12 D 47 53
.10 85 -.14 E .57 .40 17

Convergence Above Convergence at/or Below

Cloud Base Cloud Base

A B D A B D
.65 B .54
5! .49 D 43 .76
.58 D9 .45 E 7 519 45

Notch Rotation

A B D A B D
.38 B .06
51 .25 D .12 =1
.61 ¢ =57 .34 E .51 -.01 .26
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Table 5

Study 2: Agreement Correlation Coefficients for
Judgments of Probability of a Microburst

A B D
A .60
B .88 45
D 31 15 19

AL
Lis
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Study 2:

Descending core
qulapsing Storm
Convergence Above
Comvergence Below
Notch

Rotation

Probability

il

Table 6

Mean Agreement Correlation

Coefficients Over Time

.095

.290

435

515

.690

-.055

405

114

185

360

.680

745

580

.340

.540

.170

.810

.745

:853

.830

495

.605

p




Table 7

Study 2: Mean Confidence Ratings

Descending core 43 .95 .54
Collapsing Storm .50 292 .50
Convergence Above S0/ .90 .50
Convergence Below .62 .89 .60
Notch .60 99 .50
Rotation 51 97 56
Mean .54 .93 53

Probability .48 .90 54
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FIGURE CAPTIONS

Figure 1. Sequence of phases in microburst forecasting.

Figure 2. Example of a microburst case.

Figure 3. Study 1: Relative weights.

Figure 4. Study 2: Precursor judgment scales.
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Figure 2

Example of a Microburst Case
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Figure 3
Study 1: Relative Weights
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The analyses reported here are based upon a subset of data
collected during the Terminal Doppler Weather Radar (TDWR)
experiment in the Denver, Colorado area during the summer of 1988

by meteorologists at the National Center for Atmospheric Research.

The Forecasts

A full description.of the forecasting environment is presented
in Mueller, Wilson, and Heckman (1989) and only a brief description
will be provided here. A team of two to three forecasters made
consensus forecasts each hour between noon and 7 p.m. The |
forecasts were probability forecasts. A separate forecast was made
for a 10 km. radius circle centered on Stapleton International Airport
and the same size circle for the Kiowa gateway. At each forecast
time, forecasts were made for convection at the 30 dBZ level and the
50 dBZ level. In addition, at each forecast time for each dBZ level
four forecasts were made: one for the first 15 minutes after the
hour, one for the 15-30 minute time period, one for the 30-45
minute time period and one for the 45-60 minute time period. The
data analyzed in our study include only the 30 dBZ forecasts and
verification data for the two locations combined. Thus for each
forecast period (0-15 min., 15-30 min., etc.) the full sample in these

analyses includes 521 forecasts spanning 36 days.

Operationalization of Stress: Construction of Low and High Stress

Samples
A ‘tommon operationalization of siress in the experimental

Jiterature is time pressure (Ben Zur & Breznitz, 1981; Payne, Bettman
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& Johnson, 1988; Rothstein, 1986; Schwartz & Howell, 1985). We
reasoned that on days when the environment was active forecasters
had more data they must attend to, resulting in less time to produce
forecasts. Therefore we identified low and high activity days as our
operationalization of stress. Specifically, for each forecast time we
determined the number of forecasts with a probability of 20 or
above (0 forecasts if all the forecasts for both Stapleton and Kiowa
were below 20 percent; 1 forecast if either Stapleton and Kiowa, but
not both, had one forecast of 20 percent or above; 2 forecasts if both
Stapleton and Kiowa had at least one forecast of 20 percent or
above). The number of forecasts of 20 percent or above were then
summed over all the forecasts for that day. This sum represents the
amount of stress occurring on a given day. The days were then
divided into low and high stress days according to a median split of
the stress variable sum (and excluding all days with a sum of 0).

This resulted in 194 forecasts spanning 13 days in each sample.

Results

Three different measures of performance were computed, each
yielding different information: (a) contingency table skill indices, (b)
the skill score and its decomposition into linear and different bias
components, and (c) signal detection theory analyses. Each type of
analysis was first applied to the sample as a whole, then to the low
and high stress samples separately. The results for each type of
measure ,are summarized in Tables 1 through 6 and are discussed

briefly below.
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Contingency table skill measures. Construction of the
contingency tables and definitions of the skill indices are provided in
Mueller et al. (1989) and Donaldson, Dyer, and Kraus (1975). The
data included in Mueller et al. (1989) include only Stapleton data,
while those reported here include the forecasts from both Stapleton
and Kiowa. The results for the full sample are presented in Table 1.
Table 1 reveals a general trend in the data: Forecasters do very well
on forecasts that are more immediate, with skill declining as the time
period for which they are forecasting becomes more distant. Table 2
presents the results for the low and high stres: days separately. The
skill indices indicate that forecasters tend to perform better on more
active high stress days than on less active low stress days.

Decomposition of skill scores. One means of investigating
sources of errors in judgment is to decompose the skill indicated in
those judgments into (a) the linear relationship between predictions
and observed values, (b) unconditional bias, and (c) conditional bias,
as suggested by Murphy (1988) and Stewart (1989). The skill score
that is decomposed is the Brier score or the mean-square-error
between the forecasts and observations. The linear relationship is
measured by r-squared, where r is the correlation between forecasts
and observations. The conditional bias is a measure of nonsystematic
bias in the forecasts. It is related to the slope of the regression line
(it is O if the slope is 1). The unconditional bias reflects the
systematic bias in the forecasts, and is related to the intercept of the
Tegression line (see Murphy, 1988; Stewart, 1989 for further

descriptions of these measures).
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The results of this decomposition are presented in Tables 3
~and 4. In the sample as a whole (Table 3), the skill scores and the
squared correlations parallel the results of the above contingency
table skill indices (better performance for forecasts closer to the
forecast time). The conditional bias and unconditional bias measures
are very low, indicating that in the full sample these are not sources
of bias in forecasting. We were not surprised to find these measures
low because the forecasts were generated by consensus and through
this procedure forecasters may remove the biases that could be
exhibited by an individual forecaster.

However, we believed that decomposition of skill into the
above comporents might yield insight into the nature of the
performance decrement on low stress days indicated in the above
contingency table analyses (Table 2). As Table 4 indicates, the skill
scores and correlation coefficients indicate better performance under
high compared to low stress. In addition, for the low stress days the
skill scores were in many cases negative. These negative skill scores
are due in part to large conditional bias measures. The conditional
bias score reflects the extent to which variability in the forecasts is
larger than it should be, given the correlation. Thus, a major cause of
decrement in skill under low stress conditions may be due to
conditional bias.

Signal detection analyses. Signal detection theory (SDT) yields
two measures of interest: d’ and . D’ represents the degree to which
two mut'ilally exclusive events (e.g., weather events and nonevents)

can be discriminated from each other; p Tepresents the decision
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criterion (or "response bias") which is applied to this decision (i.e.,
the subjective criterion for saying, "Yes, there's something out there”
vs. "No, there is nothing out there"). It is important to note that d’ is
completely independent from $§. That is, d’ is a measure of the ability
* to perform a task (e.g., distinguishing convection from
nonconvection) which is independent from the criterion (B) used to
say "Yes" in the task. That independence is lacking between the skill
indices (FAR and POD) reported above (Table 1 and 2). Thus, these
SDT measures should further clarify differences in the low and high
stress samples.

Table 5 presents .D(A) and B for the full sample (D(A) was used
as a measure of d’ because it has the fewest assumptions regarding
distributions from which the samples were drawn). As with the
previous measures (Tables 1 and 3), diminishing discriminability is
indicated as the forecast period becomes more removed.

With regard to the effects of stress, the SDT measures allow
examination of two hypotheses about the effects of stress on
forecasters. One hypothesis states that forecasters "pay more
attention to what's going on" on high stress days. If this is true, then
it follows that forecasters should be better at predicting
meteorological events under high stress. As with the other
measures, there is support for this hypothesis. The D(A)'s in the high
stress condition are larger than their respective low stress
counterparts for each forecast period. Thus it appears that
forecasters are better at discriminating convection from non-

convection on high stress days.
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Mueller (informal communication) has suggested that different
forecasting processes occur on low and high stress days. This
suggestion can be addressed with reference to B. That is, on high
stress (activity) days forecasters tend to predict less activity than is
occurring, while on low stress (activity) days forecasters tend to
predict more activity than is occurring. Thus on high stress days
forecasters are less likely to say "yes" and on low stress days
forecasters are more likely to say "yes." This difference would be
reflected in a lower criterion for saying yes (i.e., a lower 